Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}=2-\frac{72}{23}
Subtract \frac{72}{23} from both sides.
5x^{2}=-\frac{26}{23}
Subtract \frac{72}{23} from 2 to get -\frac{26}{23}.
x^{2}=\frac{-\frac{26}{23}}{5}
Divide both sides by 5.
x^{2}=\frac{-26}{23\times 5}
Express \frac{-\frac{26}{23}}{5} as a single fraction.
x^{2}=\frac{-26}{115}
Multiply 23 and 5 to get 115.
x^{2}=-\frac{26}{115}
Fraction \frac{-26}{115} can be rewritten as -\frac{26}{115} by extracting the negative sign.
x=\frac{\sqrt{2990}i}{115} x=-\frac{\sqrt{2990}i}{115}
The equation is now solved.
5x^{2}+\frac{72}{23}-2=0
Subtract 2 from both sides.
5x^{2}+\frac{26}{23}=0
Subtract 2 from \frac{72}{23} to get \frac{26}{23}.
x=\frac{0±\sqrt{0^{2}-4\times 5\times \frac{26}{23}}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and \frac{26}{23} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\times \frac{26}{23}}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\times \frac{26}{23}}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{-\frac{520}{23}}}{2\times 5}
Multiply -20 times \frac{26}{23}.
x=\frac{0±\frac{2\sqrt{2990}i}{23}}{2\times 5}
Take the square root of -\frac{520}{23}.
x=\frac{0±\frac{2\sqrt{2990}i}{23}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{2990}i}{115}
Now solve the equation x=\frac{0±\frac{2\sqrt{2990}i}{23}}{10} when ± is plus.
x=-\frac{\sqrt{2990}i}{115}
Now solve the equation x=\frac{0±\frac{2\sqrt{2990}i}{23}}{10} when ± is minus.
x=\frac{\sqrt{2990}i}{115} x=-\frac{\sqrt{2990}i}{115}
The equation is now solved.