Skip to main content
Solve for x
Tick mark Image
Graph

Share

5x^{2}-11x=-2
Subtract 11x from both sides.
5x^{2}-11x+2=0
Add 2 to both sides.
a+b=-11 ab=5\times 2=10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
-1,-10 -2,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 10.
-1-10=-11 -2-5=-7
Calculate the sum for each pair.
a=-10 b=-1
The solution is the pair that gives sum -11.
\left(5x^{2}-10x\right)+\left(-x+2\right)
Rewrite 5x^{2}-11x+2 as \left(5x^{2}-10x\right)+\left(-x+2\right).
5x\left(x-2\right)-\left(x-2\right)
Factor out 5x in the first and -1 in the second group.
\left(x-2\right)\left(5x-1\right)
Factor out common term x-2 by using distributive property.
x=2 x=\frac{1}{5}
To find equation solutions, solve x-2=0 and 5x-1=0.
5x^{2}-11x=-2
Subtract 11x from both sides.
5x^{2}-11x+2=0
Add 2 to both sides.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 5\times 2}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -11 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 5\times 2}}{2\times 5}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-20\times 2}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-11\right)±\sqrt{121-40}}{2\times 5}
Multiply -20 times 2.
x=\frac{-\left(-11\right)±\sqrt{81}}{2\times 5}
Add 121 to -40.
x=\frac{-\left(-11\right)±9}{2\times 5}
Take the square root of 81.
x=\frac{11±9}{2\times 5}
The opposite of -11 is 11.
x=\frac{11±9}{10}
Multiply 2 times 5.
x=\frac{20}{10}
Now solve the equation x=\frac{11±9}{10} when ± is plus. Add 11 to 9.
x=2
Divide 20 by 10.
x=\frac{2}{10}
Now solve the equation x=\frac{11±9}{10} when ± is minus. Subtract 9 from 11.
x=\frac{1}{5}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
x=2 x=\frac{1}{5}
The equation is now solved.
5x^{2}-11x=-2
Subtract 11x from both sides.
\frac{5x^{2}-11x}{5}=-\frac{2}{5}
Divide both sides by 5.
x^{2}-\frac{11}{5}x=-\frac{2}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{11}{5}x+\left(-\frac{11}{10}\right)^{2}=-\frac{2}{5}+\left(-\frac{11}{10}\right)^{2}
Divide -\frac{11}{5}, the coefficient of the x term, by 2 to get -\frac{11}{10}. Then add the square of -\frac{11}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{5}x+\frac{121}{100}=-\frac{2}{5}+\frac{121}{100}
Square -\frac{11}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{5}x+\frac{121}{100}=\frac{81}{100}
Add -\frac{2}{5} to \frac{121}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{10}\right)^{2}=\frac{81}{100}
Factor x^{2}-\frac{11}{5}x+\frac{121}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
Take the square root of both sides of the equation.
x-\frac{11}{10}=\frac{9}{10} x-\frac{11}{10}=-\frac{9}{10}
Simplify.
x=2 x=\frac{1}{5}
Add \frac{11}{10} to both sides of the equation.