Solve for t
t = \frac{\sqrt{321} + 69}{10} \approx 8.691647287
t = \frac{69 - \sqrt{321}}{10} \approx 5.108352713
Share
Copied to clipboard
5t^{2}-69t+222=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-69\right)±\sqrt{\left(-69\right)^{2}-4\times 5\times 222}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -69 for b, and 222 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-69\right)±\sqrt{4761-4\times 5\times 222}}{2\times 5}
Square -69.
t=\frac{-\left(-69\right)±\sqrt{4761-20\times 222}}{2\times 5}
Multiply -4 times 5.
t=\frac{-\left(-69\right)±\sqrt{4761-4440}}{2\times 5}
Multiply -20 times 222.
t=\frac{-\left(-69\right)±\sqrt{321}}{2\times 5}
Add 4761 to -4440.
t=\frac{69±\sqrt{321}}{2\times 5}
The opposite of -69 is 69.
t=\frac{69±\sqrt{321}}{10}
Multiply 2 times 5.
t=\frac{\sqrt{321}+69}{10}
Now solve the equation t=\frac{69±\sqrt{321}}{10} when ± is plus. Add 69 to \sqrt{321}.
t=\frac{69-\sqrt{321}}{10}
Now solve the equation t=\frac{69±\sqrt{321}}{10} when ± is minus. Subtract \sqrt{321} from 69.
t=\frac{\sqrt{321}+69}{10} t=\frac{69-\sqrt{321}}{10}
The equation is now solved.
5t^{2}-69t+222=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5t^{2}-69t+222-222=-222
Subtract 222 from both sides of the equation.
5t^{2}-69t=-222
Subtracting 222 from itself leaves 0.
\frac{5t^{2}-69t}{5}=-\frac{222}{5}
Divide both sides by 5.
t^{2}-\frac{69}{5}t=-\frac{222}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}-\frac{69}{5}t+\left(-\frac{69}{10}\right)^{2}=-\frac{222}{5}+\left(-\frac{69}{10}\right)^{2}
Divide -\frac{69}{5}, the coefficient of the x term, by 2 to get -\frac{69}{10}. Then add the square of -\frac{69}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{69}{5}t+\frac{4761}{100}=-\frac{222}{5}+\frac{4761}{100}
Square -\frac{69}{10} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{69}{5}t+\frac{4761}{100}=\frac{321}{100}
Add -\frac{222}{5} to \frac{4761}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{69}{10}\right)^{2}=\frac{321}{100}
Factor t^{2}-\frac{69}{5}t+\frac{4761}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{69}{10}\right)^{2}}=\sqrt{\frac{321}{100}}
Take the square root of both sides of the equation.
t-\frac{69}{10}=\frac{\sqrt{321}}{10} t-\frac{69}{10}=-\frac{\sqrt{321}}{10}
Simplify.
t=\frac{\sqrt{321}+69}{10} t=\frac{69-\sqrt{321}}{10}
Add \frac{69}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}