Factor
\left(a-7\right)\left(5a+4\right)
Evaluate
\left(a-7\right)\left(5a+4\right)
Share
Copied to clipboard
p+q=-31 pq=5\left(-28\right)=-140
Factor the expression by grouping. First, the expression needs to be rewritten as 5a^{2}+pa+qa-28. To find p and q, set up a system to be solved.
1,-140 2,-70 4,-35 5,-28 7,-20 10,-14
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -140.
1-140=-139 2-70=-68 4-35=-31 5-28=-23 7-20=-13 10-14=-4
Calculate the sum for each pair.
p=-35 q=4
The solution is the pair that gives sum -31.
\left(5a^{2}-35a\right)+\left(4a-28\right)
Rewrite 5a^{2}-31a-28 as \left(5a^{2}-35a\right)+\left(4a-28\right).
5a\left(a-7\right)+4\left(a-7\right)
Factor out 5a in the first and 4 in the second group.
\left(a-7\right)\left(5a+4\right)
Factor out common term a-7 by using distributive property.
5a^{2}-31a-28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\times 5\left(-28\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-31\right)±\sqrt{961-4\times 5\left(-28\right)}}{2\times 5}
Square -31.
a=\frac{-\left(-31\right)±\sqrt{961-20\left(-28\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-\left(-31\right)±\sqrt{961+560}}{2\times 5}
Multiply -20 times -28.
a=\frac{-\left(-31\right)±\sqrt{1521}}{2\times 5}
Add 961 to 560.
a=\frac{-\left(-31\right)±39}{2\times 5}
Take the square root of 1521.
a=\frac{31±39}{2\times 5}
The opposite of -31 is 31.
a=\frac{31±39}{10}
Multiply 2 times 5.
a=\frac{70}{10}
Now solve the equation a=\frac{31±39}{10} when ± is plus. Add 31 to 39.
a=7
Divide 70 by 10.
a=-\frac{8}{10}
Now solve the equation a=\frac{31±39}{10} when ± is minus. Subtract 39 from 31.
a=-\frac{4}{5}
Reduce the fraction \frac{-8}{10} to lowest terms by extracting and canceling out 2.
5a^{2}-31a-28=5\left(a-7\right)\left(a-\left(-\frac{4}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and -\frac{4}{5} for x_{2}.
5a^{2}-31a-28=5\left(a-7\right)\left(a+\frac{4}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5a^{2}-31a-28=5\left(a-7\right)\times \frac{5a+4}{5}
Add \frac{4}{5} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
5a^{2}-31a-28=\left(a-7\right)\left(5a+4\right)
Cancel out 5, the greatest common factor in 5 and 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}