Solve for x
x=\frac{2}{49}\approx 0.040816327
Graph
Share
Copied to clipboard
10^{-2}\times \frac{20}{1000}\times 2=x\times \frac{9.8}{1000}
Cancel out 5 on both sides.
\frac{1}{100}\times \frac{20}{1000}\times 2=x\times \frac{9.8}{1000}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{1}{100}\times \frac{1}{50}\times 2=x\times \frac{9.8}{1000}
Reduce the fraction \frac{20}{1000} to lowest terms by extracting and canceling out 20.
\frac{1}{5000}\times 2=x\times \frac{9.8}{1000}
Multiply \frac{1}{100} and \frac{1}{50} to get \frac{1}{5000}.
\frac{1}{2500}=x\times \frac{9.8}{1000}
Multiply \frac{1}{5000} and 2 to get \frac{1}{2500}.
\frac{1}{2500}=x\times \frac{98}{10000}
Expand \frac{9.8}{1000} by multiplying both numerator and the denominator by 10.
\frac{1}{2500}=x\times \frac{49}{5000}
Reduce the fraction \frac{98}{10000} to lowest terms by extracting and canceling out 2.
x\times \frac{49}{5000}=\frac{1}{2500}
Swap sides so that all variable terms are on the left hand side.
x=\frac{1}{2500}\times \frac{5000}{49}
Multiply both sides by \frac{5000}{49}, the reciprocal of \frac{49}{5000}.
x=\frac{2}{49}
Multiply \frac{1}{2500} and \frac{5000}{49} to get \frac{2}{49}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}