Solve for x
x=12.4
Graph
Share
Copied to clipboard
100+\left(x-5\right)\times 4=\left(5\times 20+44\right)\times 0.9
Multiply 5 and 20 to get 100.
100+4x-20=\left(5\times 20+44\right)\times 0.9
Use the distributive property to multiply x-5 by 4.
80+4x=\left(5\times 20+44\right)\times 0.9
Subtract 20 from 100 to get 80.
80+4x=\left(100+44\right)\times 0.9
Multiply 5 and 20 to get 100.
80+4x=144\times 0.9
Add 100 and 44 to get 144.
80+4x=129.6
Multiply 144 and 0.9 to get 129.6.
4x=129.6-80
Subtract 80 from both sides.
4x=49.6
Subtract 80 from 129.6 to get 49.6.
x=\frac{49.6}{4}
Divide both sides by 4.
x=\frac{496}{40}
Expand \frac{49.6}{4} by multiplying both numerator and the denominator by 10.
x=\frac{62}{5}
Reduce the fraction \frac{496}{40} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}