Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\times 10\sqrt{7}-4\sqrt{343}-3\sqrt{112}-21\sqrt{7^{-1}}
Factor 700=10^{2}\times 7. Rewrite the square root of the product \sqrt{10^{2}\times 7} as the product of square roots \sqrt{10^{2}}\sqrt{7}. Take the square root of 10^{2}.
50\sqrt{7}-4\sqrt{343}-3\sqrt{112}-21\sqrt{7^{-1}}
Multiply 5 and 10 to get 50.
50\sqrt{7}-4\times 7\sqrt{7}-3\sqrt{112}-21\sqrt{7^{-1}}
Factor 343=7^{2}\times 7. Rewrite the square root of the product \sqrt{7^{2}\times 7} as the product of square roots \sqrt{7^{2}}\sqrt{7}. Take the square root of 7^{2}.
50\sqrt{7}-28\sqrt{7}-3\sqrt{112}-21\sqrt{7^{-1}}
Multiply -4 and 7 to get -28.
22\sqrt{7}-3\sqrt{112}-21\sqrt{7^{-1}}
Combine 50\sqrt{7} and -28\sqrt{7} to get 22\sqrt{7}.
22\sqrt{7}-3\times 4\sqrt{7}-21\sqrt{7^{-1}}
Factor 112=4^{2}\times 7. Rewrite the square root of the product \sqrt{4^{2}\times 7} as the product of square roots \sqrt{4^{2}}\sqrt{7}. Take the square root of 4^{2}.
22\sqrt{7}-12\sqrt{7}-21\sqrt{7^{-1}}
Multiply -3 and 4 to get -12.
10\sqrt{7}-21\sqrt{7^{-1}}
Combine 22\sqrt{7} and -12\sqrt{7} to get 10\sqrt{7}.
10\sqrt{7}-21\sqrt{\frac{1}{7}}
Calculate 7 to the power of -1 and get \frac{1}{7}.
10\sqrt{7}-21\times \frac{\sqrt{1}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{1}{7}} as the division of square roots \frac{\sqrt{1}}{\sqrt{7}}.
10\sqrt{7}-21\times \frac{1}{\sqrt{7}}
Calculate the square root of 1 and get 1.
10\sqrt{7}-21\times \frac{\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
10\sqrt{7}-21\times \frac{\sqrt{7}}{7}
The square of \sqrt{7} is 7.
10\sqrt{7}-3\sqrt{7}
Cancel out 7, the greatest common factor in 21 and 7.
7\sqrt{7}
Combine 10\sqrt{7} and -3\sqrt{7} to get 7\sqrt{7}.