Solve for x
x=0.4-y
Solve for y
y=0.4-x
Graph
Share
Copied to clipboard
2.5\sqrt{3}\left(x+y\right)=\sqrt{3}
Multiply 0.5 and 5 to get 2.5.
2.5\sqrt{3}x+2.5\sqrt{3}y=\sqrt{3}
Use the distributive property to multiply 2.5\sqrt{3} by x+y.
2.5\sqrt{3}x=\sqrt{3}-2.5\sqrt{3}y
Subtract 2.5\sqrt{3}y from both sides.
\frac{5\sqrt{3}}{2}x=-\frac{5\sqrt{3}y}{2}+\sqrt{3}
The equation is in standard form.
\frac{2\times \frac{5\sqrt{3}}{2}x}{5\sqrt{3}}=\frac{2\sqrt{3}\left(-\frac{5y}{2}+1\right)}{5\sqrt{3}}
Divide both sides by 2.5\sqrt{3}.
x=\frac{2\sqrt{3}\left(-\frac{5y}{2}+1\right)}{5\sqrt{3}}
Dividing by 2.5\sqrt{3} undoes the multiplication by 2.5\sqrt{3}.
x=\frac{2}{5}-y
Divide \left(1-\frac{5y}{2}\right)\sqrt{3} by 2.5\sqrt{3}.
2.5\sqrt{3}\left(x+y\right)=\sqrt{3}
Multiply 0.5 and 5 to get 2.5.
2.5\sqrt{3}x+2.5\sqrt{3}y=\sqrt{3}
Use the distributive property to multiply 2.5\sqrt{3} by x+y.
2.5\sqrt{3}y=\sqrt{3}-2.5\sqrt{3}x
Subtract 2.5\sqrt{3}x from both sides.
\frac{5\sqrt{3}}{2}y=-\frac{5\sqrt{3}x}{2}+\sqrt{3}
The equation is in standard form.
\frac{2\times \frac{5\sqrt{3}}{2}y}{5\sqrt{3}}=\frac{2\sqrt{3}\left(-\frac{5x}{2}+1\right)}{5\sqrt{3}}
Divide both sides by 2.5\sqrt{3}.
y=\frac{2\sqrt{3}\left(-\frac{5x}{2}+1\right)}{5\sqrt{3}}
Dividing by 2.5\sqrt{3} undoes the multiplication by 2.5\sqrt{3}.
y=\frac{2}{5}-x
Divide \left(1-\frac{5x}{2}\right)\sqrt{3} by 2.5\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}