Solve for x
x = \frac{39 - 5 \sqrt{41}}{2} \approx 3.492189406
Graph
Share
Copied to clipboard
\left(5\sqrt{x-3}\right)^{2}=\left(7-x\right)^{2}
Square both sides of the equation.
5^{2}\left(\sqrt{x-3}\right)^{2}=\left(7-x\right)^{2}
Expand \left(5\sqrt{x-3}\right)^{2}.
25\left(\sqrt{x-3}\right)^{2}=\left(7-x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25\left(x-3\right)=\left(7-x\right)^{2}
Calculate \sqrt{x-3} to the power of 2 and get x-3.
25x-75=\left(7-x\right)^{2}
Use the distributive property to multiply 25 by x-3.
25x-75=49-14x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
25x-75-49=-14x+x^{2}
Subtract 49 from both sides.
25x-124=-14x+x^{2}
Subtract 49 from -75 to get -124.
25x-124+14x=x^{2}
Add 14x to both sides.
39x-124=x^{2}
Combine 25x and 14x to get 39x.
39x-124-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+39x-124=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-39±\sqrt{39^{2}-4\left(-1\right)\left(-124\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 39 for b, and -124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-39±\sqrt{1521-4\left(-1\right)\left(-124\right)}}{2\left(-1\right)}
Square 39.
x=\frac{-39±\sqrt{1521+4\left(-124\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-39±\sqrt{1521-496}}{2\left(-1\right)}
Multiply 4 times -124.
x=\frac{-39±\sqrt{1025}}{2\left(-1\right)}
Add 1521 to -496.
x=\frac{-39±5\sqrt{41}}{2\left(-1\right)}
Take the square root of 1025.
x=\frac{-39±5\sqrt{41}}{-2}
Multiply 2 times -1.
x=\frac{5\sqrt{41}-39}{-2}
Now solve the equation x=\frac{-39±5\sqrt{41}}{-2} when ± is plus. Add -39 to 5\sqrt{41}.
x=\frac{39-5\sqrt{41}}{2}
Divide -39+5\sqrt{41} by -2.
x=\frac{-5\sqrt{41}-39}{-2}
Now solve the equation x=\frac{-39±5\sqrt{41}}{-2} when ± is minus. Subtract 5\sqrt{41} from -39.
x=\frac{5\sqrt{41}+39}{2}
Divide -39-5\sqrt{41} by -2.
x=\frac{39-5\sqrt{41}}{2} x=\frac{5\sqrt{41}+39}{2}
The equation is now solved.
5\sqrt{\frac{39-5\sqrt{41}}{2}-3}=7-\frac{39-5\sqrt{41}}{2}
Substitute \frac{39-5\sqrt{41}}{2} for x in the equation 5\sqrt{x-3}=7-x.
-\frac{25}{2}+\frac{5}{2}\times 41^{\frac{1}{2}}=-\frac{25}{2}+\frac{5}{2}\times 41^{\frac{1}{2}}
Simplify. The value x=\frac{39-5\sqrt{41}}{2} satisfies the equation.
5\sqrt{\frac{5\sqrt{41}+39}{2}-3}=7-\frac{5\sqrt{41}+39}{2}
Substitute \frac{5\sqrt{41}+39}{2} for x in the equation 5\sqrt{x-3}=7-x.
\frac{25}{2}+\frac{5}{2}\times 41^{\frac{1}{2}}=-\frac{25}{2}-\frac{5}{2}\times 41^{\frac{1}{2}}
Simplify. The value x=\frac{5\sqrt{41}+39}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{39-5\sqrt{41}}{2}
Equation 5\sqrt{x-3}=7-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}