Evaluate
\frac{15\sqrt{2}}{2}\approx 10.606601718
Share
Copied to clipboard
5\times 2\sqrt{2}-\sqrt{\frac{25}{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
10\sqrt{2}-\sqrt{\frac{25}{2}}
Multiply 5 and 2 to get 10.
10\sqrt{2}-\frac{\sqrt{25}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{25}{2}} as the division of square roots \frac{\sqrt{25}}{\sqrt{2}}.
10\sqrt{2}-\frac{5}{\sqrt{2}}
Calculate the square root of 25 and get 5.
10\sqrt{2}-\frac{5\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{5}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
10\sqrt{2}-\frac{5\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{2\times 10\sqrt{2}}{2}-\frac{5\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 10\sqrt{2} times \frac{2}{2}.
\frac{2\times 10\sqrt{2}-5\sqrt{2}}{2}
Since \frac{2\times 10\sqrt{2}}{2} and \frac{5\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{20\sqrt{2}-5\sqrt{2}}{2}
Do the multiplications in 2\times 10\sqrt{2}-5\sqrt{2}.
\frac{15\sqrt{2}}{2}
Do the calculations in 20\sqrt{2}-5\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}