Evaluate
15\sqrt{2}+16\sqrt{7}\approx 63.545224413
Share
Copied to clipboard
5\times 3\sqrt{7}+3\sqrt{2}-2\sqrt{18}+3\sqrt{7}+3\sqrt{72}-\sqrt{28}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
15\sqrt{7}+3\sqrt{2}-2\sqrt{18}+3\sqrt{7}+3\sqrt{72}-\sqrt{28}
Multiply 5 and 3 to get 15.
15\sqrt{7}+3\sqrt{2}-2\times 3\sqrt{2}+3\sqrt{7}+3\sqrt{72}-\sqrt{28}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
15\sqrt{7}+3\sqrt{2}-6\sqrt{2}+3\sqrt{7}+3\sqrt{72}-\sqrt{28}
Multiply -2 and 3 to get -6.
15\sqrt{7}-3\sqrt{2}+3\sqrt{7}+3\sqrt{72}-\sqrt{28}
Combine 3\sqrt{2} and -6\sqrt{2} to get -3\sqrt{2}.
18\sqrt{7}-3\sqrt{2}+3\sqrt{72}-\sqrt{28}
Combine 15\sqrt{7} and 3\sqrt{7} to get 18\sqrt{7}.
18\sqrt{7}-3\sqrt{2}+3\times 6\sqrt{2}-\sqrt{28}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
18\sqrt{7}-3\sqrt{2}+18\sqrt{2}-\sqrt{28}
Multiply 3 and 6 to get 18.
18\sqrt{7}+15\sqrt{2}-\sqrt{28}
Combine -3\sqrt{2} and 18\sqrt{2} to get 15\sqrt{2}.
18\sqrt{7}+15\sqrt{2}-2\sqrt{7}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
16\sqrt{7}+15\sqrt{2}
Combine 18\sqrt{7} and -2\sqrt{7} to get 16\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}