Evaluate
15\sqrt{2}+26\sqrt{3}\approx 66.246524432
Quiz
Arithmetic
5 problems similar to:
5 \sqrt { 50 } + 3 \sqrt { 108 } - 10 \sqrt { 2 } + 4 \sqrt { 12 }
Share
Copied to clipboard
5\times 5\sqrt{2}+3\sqrt{108}-10\sqrt{2}+4\sqrt{12}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
25\sqrt{2}+3\sqrt{108}-10\sqrt{2}+4\sqrt{12}
Multiply 5 and 5 to get 25.
25\sqrt{2}+3\times 6\sqrt{3}-10\sqrt{2}+4\sqrt{12}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
25\sqrt{2}+18\sqrt{3}-10\sqrt{2}+4\sqrt{12}
Multiply 3 and 6 to get 18.
15\sqrt{2}+18\sqrt{3}+4\sqrt{12}
Combine 25\sqrt{2} and -10\sqrt{2} to get 15\sqrt{2}.
15\sqrt{2}+18\sqrt{3}+4\times 2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
15\sqrt{2}+18\sqrt{3}+8\sqrt{3}
Multiply 4 and 2 to get 8.
15\sqrt{2}+26\sqrt{3}
Combine 18\sqrt{3} and 8\sqrt{3} to get 26\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}