Solve for y
y=5\sqrt{3}+15\approx 23.660254038
Graph
Share
Copied to clipboard
15\sqrt{3}+30+\sqrt{3}y=3\sqrt{3}\left(y-5\right)
Multiply both sides of the equation by 3.
15\sqrt{3}+30+\sqrt{3}y=3\sqrt{3}y-15\sqrt{3}
Use the distributive property to multiply 3\sqrt{3} by y-5.
15\sqrt{3}+30+\sqrt{3}y-3\sqrt{3}y=-15\sqrt{3}
Subtract 3\sqrt{3}y from both sides.
15\sqrt{3}+30-2\sqrt{3}y=-15\sqrt{3}
Combine \sqrt{3}y and -3\sqrt{3}y to get -2\sqrt{3}y.
30-2\sqrt{3}y=-15\sqrt{3}-15\sqrt{3}
Subtract 15\sqrt{3} from both sides.
30-2\sqrt{3}y=-30\sqrt{3}
Combine -15\sqrt{3} and -15\sqrt{3} to get -30\sqrt{3}.
-2\sqrt{3}y=-30\sqrt{3}-30
Subtract 30 from both sides.
\left(-2\sqrt{3}\right)y=-30\sqrt{3}-30
The equation is in standard form.
\frac{\left(-2\sqrt{3}\right)y}{-2\sqrt{3}}=\frac{-30\sqrt{3}-30}{-2\sqrt{3}}
Divide both sides by -2\sqrt{3}.
y=\frac{-30\sqrt{3}-30}{-2\sqrt{3}}
Dividing by -2\sqrt{3} undoes the multiplication by -2\sqrt{3}.
y=5\sqrt{3}+15
Divide -30\sqrt{3}-30 by -2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}