Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\times 2\sqrt{3}+7\sqrt{27}-\sqrt{243}-\frac{1}{2}\sqrt{75}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
10\sqrt{3}+7\sqrt{27}-\sqrt{243}-\frac{1}{2}\sqrt{75}
Multiply 5 and 2 to get 10.
10\sqrt{3}+7\times 3\sqrt{3}-\sqrt{243}-\frac{1}{2}\sqrt{75}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
10\sqrt{3}+21\sqrt{3}-\sqrt{243}-\frac{1}{2}\sqrt{75}
Multiply 7 and 3 to get 21.
31\sqrt{3}-\sqrt{243}-\frac{1}{2}\sqrt{75}
Combine 10\sqrt{3} and 21\sqrt{3} to get 31\sqrt{3}.
31\sqrt{3}-9\sqrt{3}-\frac{1}{2}\sqrt{75}
Factor 243=9^{2}\times 3. Rewrite the square root of the product \sqrt{9^{2}\times 3} as the product of square roots \sqrt{9^{2}}\sqrt{3}. Take the square root of 9^{2}.
22\sqrt{3}-\frac{1}{2}\sqrt{75}
Combine 31\sqrt{3} and -9\sqrt{3} to get 22\sqrt{3}.
22\sqrt{3}-\frac{1}{2}\times 5\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
22\sqrt{3}+\frac{-5}{2}\sqrt{3}
Express -\frac{1}{2}\times 5 as a single fraction.
22\sqrt{3}-\frac{5}{2}\sqrt{3}
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\frac{39}{2}\sqrt{3}
Combine 22\sqrt{3} and -\frac{5}{2}\sqrt{3} to get \frac{39}{2}\sqrt{3}.