Evaluate (complex solution)
20\sqrt{2}i\approx 28.284271247i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
5\times \left(5i\right)\sqrt{2}-3\sqrt{-18}+2\sqrt{-8}
Factor -50=\left(5i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 2} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{2}. Take the square root of \left(5i\right)^{2}.
25i\sqrt{2}-3\sqrt{-18}+2\sqrt{-8}
Multiply 5 and 5i to get 25i.
25i\sqrt{2}-3\times \left(3i\right)\sqrt{2}+2\sqrt{-8}
Factor -18=\left(3i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(3i\right)^{2}\times 2} as the product of square roots \sqrt{\left(3i\right)^{2}}\sqrt{2}. Take the square root of \left(3i\right)^{2}.
25i\sqrt{2}-9i\sqrt{2}+2\sqrt{-8}
Multiply -3 and 3i to get -9i.
16i\sqrt{2}+2\sqrt{-8}
Combine 25i\sqrt{2} and -9i\sqrt{2} to get 16i\sqrt{2}.
16i\sqrt{2}+2\times \left(2i\right)\sqrt{2}
Factor -8=\left(2i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 2} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{2}. Take the square root of \left(2i\right)^{2}.
16i\sqrt{2}+4i\sqrt{2}
Multiply 2 and 2i to get 4i.
20i\sqrt{2}
Combine 16i\sqrt{2} and 4i\sqrt{2} to get 20i\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}