Skip to main content
Evaluate (complex solution)
Tick mark Image
Real Part (complex solution)
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\times \left(5i\right)\sqrt{2}-3\sqrt{-18}+2\sqrt{-8}
Factor -50=\left(5i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 2} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{2}. Take the square root of \left(5i\right)^{2}.
25i\sqrt{2}-3\sqrt{-18}+2\sqrt{-8}
Multiply 5 and 5i to get 25i.
25i\sqrt{2}-3\times \left(3i\right)\sqrt{2}+2\sqrt{-8}
Factor -18=\left(3i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(3i\right)^{2}\times 2} as the product of square roots \sqrt{\left(3i\right)^{2}}\sqrt{2}. Take the square root of \left(3i\right)^{2}.
25i\sqrt{2}-9i\sqrt{2}+2\sqrt{-8}
Multiply -3 and 3i to get -9i.
16i\sqrt{2}+2\sqrt{-8}
Combine 25i\sqrt{2} and -9i\sqrt{2} to get 16i\sqrt{2}.
16i\sqrt{2}+2\times \left(2i\right)\sqrt{2}
Factor -8=\left(2i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 2} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{2}. Take the square root of \left(2i\right)^{2}.
16i\sqrt{2}+4i\sqrt{2}
Multiply 2 and 2i to get 4i.
20i\sqrt{2}
Combine 16i\sqrt{2} and 4i\sqrt{2} to get 20i\sqrt{2}.