Evaluate
\frac{9\sqrt{5}}{2}\approx 10.062305899
Share
Copied to clipboard
5\times \frac{\sqrt{1}}{\sqrt{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{45}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
5\times \frac{1}{\sqrt{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{45}
Calculate the square root of 1 and get 1.
5\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{45}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
5\times \frac{\sqrt{5}}{5}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{45}
The square of \sqrt{5} is 5.
\sqrt{5}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{45}
Cancel out 5 and 5.
\sqrt{5}+\frac{1}{2}\times 2\sqrt{5}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{45}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\sqrt{5}+\sqrt{5}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{45}
Cancel out 2 and 2.
2\sqrt{5}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{45}
Combine \sqrt{5} and \sqrt{5} to get 2\sqrt{5}.
2\sqrt{5}-\frac{5}{4}\times \frac{\sqrt{4}}{\sqrt{5}}+\sqrt{45}
Rewrite the square root of the division \sqrt{\frac{4}{5}} as the division of square roots \frac{\sqrt{4}}{\sqrt{5}}.
2\sqrt{5}-\frac{5}{4}\times \frac{2}{\sqrt{5}}+\sqrt{45}
Calculate the square root of 4 and get 2.
2\sqrt{5}-\frac{5}{4}\times \frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\sqrt{45}
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
2\sqrt{5}-\frac{5}{4}\times \frac{2\sqrt{5}}{5}+\sqrt{45}
The square of \sqrt{5} is 5.
2\sqrt{5}+\frac{-5\times 2\sqrt{5}}{4\times 5}+\sqrt{45}
Multiply -\frac{5}{4} times \frac{2\sqrt{5}}{5} by multiplying numerator times numerator and denominator times denominator.
2\sqrt{5}+\frac{-\sqrt{5}}{2}+\sqrt{45}
Cancel out 2\times 5 in both numerator and denominator.
\frac{3}{2}\sqrt{5}+\sqrt{45}
Combine 2\sqrt{5} and \frac{-\sqrt{5}}{2} to get \frac{3}{2}\sqrt{5}.
\frac{3}{2}\sqrt{5}+3\sqrt{5}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{9}{2}\sqrt{5}
Combine \frac{3}{2}\sqrt{5} and 3\sqrt{5} to get \frac{9}{2}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}