Solve for λ
\lambda =1
\lambda =7
Share
Copied to clipboard
\lambda ^{2}-8\lambda +7=0
Divide both sides by 5.
a+b=-8 ab=1\times 7=7
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as \lambda ^{2}+a\lambda +b\lambda +7. To find a and b, set up a system to be solved.
a=-7 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(\lambda ^{2}-7\lambda \right)+\left(-\lambda +7\right)
Rewrite \lambda ^{2}-8\lambda +7 as \left(\lambda ^{2}-7\lambda \right)+\left(-\lambda +7\right).
\lambda \left(\lambda -7\right)-\left(\lambda -7\right)
Factor out \lambda in the first and -1 in the second group.
\left(\lambda -7\right)\left(\lambda -1\right)
Factor out common term \lambda -7 by using distributive property.
\lambda =7 \lambda =1
To find equation solutions, solve \lambda -7=0 and \lambda -1=0.
5\lambda ^{2}-40\lambda +35=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 35}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -40 for b, and 35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 35}}{2\times 5}
Square -40.
\lambda =\frac{-\left(-40\right)±\sqrt{1600-20\times 35}}{2\times 5}
Multiply -4 times 5.
\lambda =\frac{-\left(-40\right)±\sqrt{1600-700}}{2\times 5}
Multiply -20 times 35.
\lambda =\frac{-\left(-40\right)±\sqrt{900}}{2\times 5}
Add 1600 to -700.
\lambda =\frac{-\left(-40\right)±30}{2\times 5}
Take the square root of 900.
\lambda =\frac{40±30}{2\times 5}
The opposite of -40 is 40.
\lambda =\frac{40±30}{10}
Multiply 2 times 5.
\lambda =\frac{70}{10}
Now solve the equation \lambda =\frac{40±30}{10} when ± is plus. Add 40 to 30.
\lambda =7
Divide 70 by 10.
\lambda =\frac{10}{10}
Now solve the equation \lambda =\frac{40±30}{10} when ± is minus. Subtract 30 from 40.
\lambda =1
Divide 10 by 10.
\lambda =7 \lambda =1
The equation is now solved.
5\lambda ^{2}-40\lambda +35=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5\lambda ^{2}-40\lambda +35-35=-35
Subtract 35 from both sides of the equation.
5\lambda ^{2}-40\lambda =-35
Subtracting 35 from itself leaves 0.
\frac{5\lambda ^{2}-40\lambda }{5}=-\frac{35}{5}
Divide both sides by 5.
\lambda ^{2}+\left(-\frac{40}{5}\right)\lambda =-\frac{35}{5}
Dividing by 5 undoes the multiplication by 5.
\lambda ^{2}-8\lambda =-\frac{35}{5}
Divide -40 by 5.
\lambda ^{2}-8\lambda =-7
Divide -35 by 5.
\lambda ^{2}-8\lambda +\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-8\lambda +16=-7+16
Square -4.
\lambda ^{2}-8\lambda +16=9
Add -7 to 16.
\left(\lambda -4\right)^{2}=9
Factor \lambda ^{2}-8\lambda +16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -4\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
\lambda -4=3 \lambda -4=-3
Simplify.
\lambda =7 \lambda =1
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}