Evaluate
\frac{128}{5}=25.6
Factor
\frac{2 ^ {7}}{5} = 25\frac{3}{5} = 25.6
Share
Copied to clipboard
\left(\frac{5\times 5+3}{5}\right)^{2}-\frac{2\times 5+2}{5}\times \frac{2\times 5+2}{5}
Multiply \frac{5\times 5+3}{5} and \frac{5\times 5+3}{5} to get \left(\frac{5\times 5+3}{5}\right)^{2}.
\left(\frac{5\times 5+3}{5}\right)^{2}-\left(\frac{2\times 5+2}{5}\right)^{2}
Multiply \frac{2\times 5+2}{5} and \frac{2\times 5+2}{5} to get \left(\frac{2\times 5+2}{5}\right)^{2}.
\left(\frac{25+3}{5}\right)^{2}-\left(\frac{2\times 5+2}{5}\right)^{2}
Multiply 5 and 5 to get 25.
\left(\frac{28}{5}\right)^{2}-\left(\frac{2\times 5+2}{5}\right)^{2}
Add 25 and 3 to get 28.
\frac{784}{25}-\left(\frac{2\times 5+2}{5}\right)^{2}
Calculate \frac{28}{5} to the power of 2 and get \frac{784}{25}.
\frac{784}{25}-\left(\frac{10+2}{5}\right)^{2}
Multiply 2 and 5 to get 10.
\frac{784}{25}-\left(\frac{12}{5}\right)^{2}
Add 10 and 2 to get 12.
\frac{784}{25}-\frac{144}{25}
Calculate \frac{12}{5} to the power of 2 and get \frac{144}{25}.
\frac{784-144}{25}
Since \frac{784}{25} and \frac{144}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{640}{25}
Subtract 144 from 784 to get 640.
\frac{128}{5}
Reduce the fraction \frac{640}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}