Evaluate
\frac{319}{45}\approx 7.088888889
Factor
\frac{11 \cdot 29}{3 ^ {2} \cdot 5} = 7\frac{4}{45} = 7.088888888888889
Share
Copied to clipboard
\frac{75+2}{15}+\frac{2\times 30+2}{30}-\frac{5}{45}
Multiply 5 and 15 to get 75.
\frac{77}{15}+\frac{2\times 30+2}{30}-\frac{5}{45}
Add 75 and 2 to get 77.
\frac{77}{15}+\frac{60+2}{30}-\frac{5}{45}
Multiply 2 and 30 to get 60.
\frac{77}{15}+\frac{62}{30}-\frac{5}{45}
Add 60 and 2 to get 62.
\frac{77}{15}+\frac{31}{15}-\frac{5}{45}
Reduce the fraction \frac{62}{30} to lowest terms by extracting and canceling out 2.
\frac{77+31}{15}-\frac{5}{45}
Since \frac{77}{15} and \frac{31}{15} have the same denominator, add them by adding their numerators.
\frac{108}{15}-\frac{5}{45}
Add 77 and 31 to get 108.
\frac{36}{5}-\frac{5}{45}
Reduce the fraction \frac{108}{15} to lowest terms by extracting and canceling out 3.
\frac{36}{5}-\frac{1}{9}
Reduce the fraction \frac{5}{45} to lowest terms by extracting and canceling out 5.
\frac{324}{45}-\frac{5}{45}
Least common multiple of 5 and 9 is 45. Convert \frac{36}{5} and \frac{1}{9} to fractions with denominator 45.
\frac{324-5}{45}
Since \frac{324}{45} and \frac{5}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{319}{45}
Subtract 5 from 324 to get 319.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}