Evaluate
\frac{165}{14}\approx 11.785714286
Factor
\frac{3 \cdot 5 \cdot 11}{2 \cdot 7} = 11\frac{11}{14} = 11.785714285714286
Quiz
Arithmetic
5 problems similar to:
5 \frac{ 1 }{ 2 } +7 \frac{ 1 }{ 3 } \div 1 \frac { 1 } { 6 } =
Share
Copied to clipboard
\frac{10+1}{2}+\frac{\frac{7\times 3+1}{3}}{\frac{1\times 6+1}{6}}
Multiply 5 and 2 to get 10.
\frac{11}{2}+\frac{\frac{7\times 3+1}{3}}{\frac{1\times 6+1}{6}}
Add 10 and 1 to get 11.
\frac{11}{2}+\frac{\left(7\times 3+1\right)\times 6}{3\left(1\times 6+1\right)}
Divide \frac{7\times 3+1}{3} by \frac{1\times 6+1}{6} by multiplying \frac{7\times 3+1}{3} by the reciprocal of \frac{1\times 6+1}{6}.
\frac{11}{2}+\frac{2\left(1+3\times 7\right)}{1+6}
Cancel out 3 in both numerator and denominator.
\frac{11}{2}+\frac{2\left(1+21\right)}{1+6}
Multiply 3 and 7 to get 21.
\frac{11}{2}+\frac{2\times 22}{1+6}
Add 1 and 21 to get 22.
\frac{11}{2}+\frac{44}{1+6}
Multiply 2 and 22 to get 44.
\frac{11}{2}+\frac{44}{7}
Add 1 and 6 to get 7.
\frac{77}{14}+\frac{88}{14}
Least common multiple of 2 and 7 is 14. Convert \frac{11}{2} and \frac{44}{7} to fractions with denominator 14.
\frac{77+88}{14}
Since \frac{77}{14} and \frac{88}{14} have the same denominator, add them by adding their numerators.
\frac{165}{14}
Add 77 and 88 to get 165.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}