Evaluate
\frac{14}{3}\approx 4.666666667
Factor
\frac{2 \cdot 7}{3} = 4\frac{2}{3} = 4.666666666666667
Share
Copied to clipboard
\frac{\frac{30+5}{6}\times \frac{2\times 10+1}{10}}{\frac{2\times 8+5}{8}}
Multiply 5 and 6 to get 30.
\frac{\frac{35}{6}\times \frac{2\times 10+1}{10}}{\frac{2\times 8+5}{8}}
Add 30 and 5 to get 35.
\frac{\frac{35}{6}\times \frac{20+1}{10}}{\frac{2\times 8+5}{8}}
Multiply 2 and 10 to get 20.
\frac{\frac{35}{6}\times \frac{21}{10}}{\frac{2\times 8+5}{8}}
Add 20 and 1 to get 21.
\frac{\frac{35\times 21}{6\times 10}}{\frac{2\times 8+5}{8}}
Multiply \frac{35}{6} times \frac{21}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{735}{60}}{\frac{2\times 8+5}{8}}
Do the multiplications in the fraction \frac{35\times 21}{6\times 10}.
\frac{\frac{49}{4}}{\frac{2\times 8+5}{8}}
Reduce the fraction \frac{735}{60} to lowest terms by extracting and canceling out 15.
\frac{\frac{49}{4}}{\frac{16+5}{8}}
Multiply 2 and 8 to get 16.
\frac{\frac{49}{4}}{\frac{21}{8}}
Add 16 and 5 to get 21.
\frac{49}{4}\times \frac{8}{21}
Divide \frac{49}{4} by \frac{21}{8} by multiplying \frac{49}{4} by the reciprocal of \frac{21}{8}.
\frac{49\times 8}{4\times 21}
Multiply \frac{49}{4} times \frac{8}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{392}{84}
Do the multiplications in the fraction \frac{49\times 8}{4\times 21}.
\frac{14}{3}
Reduce the fraction \frac{392}{84} to lowest terms by extracting and canceling out 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}