Evaluate
\frac{70}{3}\approx 23.333333333
Factor
\frac{2 \cdot 5 \cdot 7}{3} = 23\frac{1}{3} = 23.333333333333332
Share
Copied to clipboard
\frac{95+4}{19}\times \frac{3\times 7+4}{7}+\frac{\frac{1\times 19+15}{19}}{\frac{7}{25}}-\frac{1\times 3+2}{3}
Multiply 5 and 19 to get 95.
\frac{99}{19}\times \frac{3\times 7+4}{7}+\frac{\frac{1\times 19+15}{19}}{\frac{7}{25}}-\frac{1\times 3+2}{3}
Add 95 and 4 to get 99.
\frac{99}{19}\times \frac{21+4}{7}+\frac{\frac{1\times 19+15}{19}}{\frac{7}{25}}-\frac{1\times 3+2}{3}
Multiply 3 and 7 to get 21.
\frac{99}{19}\times \frac{25}{7}+\frac{\frac{1\times 19+15}{19}}{\frac{7}{25}}-\frac{1\times 3+2}{3}
Add 21 and 4 to get 25.
\frac{99\times 25}{19\times 7}+\frac{\frac{1\times 19+15}{19}}{\frac{7}{25}}-\frac{1\times 3+2}{3}
Multiply \frac{99}{19} times \frac{25}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{2475}{133}+\frac{\frac{1\times 19+15}{19}}{\frac{7}{25}}-\frac{1\times 3+2}{3}
Do the multiplications in the fraction \frac{99\times 25}{19\times 7}.
\frac{2475}{133}+\frac{\left(1\times 19+15\right)\times 25}{19\times 7}-\frac{1\times 3+2}{3}
Divide \frac{1\times 19+15}{19} by \frac{7}{25} by multiplying \frac{1\times 19+15}{19} by the reciprocal of \frac{7}{25}.
\frac{2475}{133}+\frac{\left(19+15\right)\times 25}{19\times 7}-\frac{1\times 3+2}{3}
Multiply 1 and 19 to get 19.
\frac{2475}{133}+\frac{34\times 25}{19\times 7}-\frac{1\times 3+2}{3}
Add 19 and 15 to get 34.
\frac{2475}{133}+\frac{850}{19\times 7}-\frac{1\times 3+2}{3}
Multiply 34 and 25 to get 850.
\frac{2475}{133}+\frac{850}{133}-\frac{1\times 3+2}{3}
Multiply 19 and 7 to get 133.
\frac{2475+850}{133}-\frac{1\times 3+2}{3}
Since \frac{2475}{133} and \frac{850}{133} have the same denominator, add them by adding their numerators.
\frac{3325}{133}-\frac{1\times 3+2}{3}
Add 2475 and 850 to get 3325.
25-\frac{1\times 3+2}{3}
Divide 3325 by 133 to get 25.
25-\frac{3+2}{3}
Multiply 1 and 3 to get 3.
25-\frac{5}{3}
Add 3 and 2 to get 5.
\frac{75}{3}-\frac{5}{3}
Convert 25 to fraction \frac{75}{3}.
\frac{75-5}{3}
Since \frac{75}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{70}{3}
Subtract 5 from 75 to get 70.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}