Evaluate
\frac{63}{20}=3.15
Factor
\frac{3 ^ {2} \cdot 7}{2 ^ {2} \cdot 5} = 3\frac{3}{20} = 3.15
Share
Copied to clipboard
\frac{40+3}{8}-\left(\frac{3\times 5+3}{5}-\left(\frac{1\times 8+3}{8}-\left(\frac{3}{4}-\frac{1}{2}-\frac{1}{4}\right)\right)\right)
Multiply 5 and 8 to get 40.
\frac{43}{8}-\left(\frac{3\times 5+3}{5}-\left(\frac{1\times 8+3}{8}-\left(\frac{3}{4}-\frac{1}{2}-\frac{1}{4}\right)\right)\right)
Add 40 and 3 to get 43.
\frac{43}{8}-\left(\frac{15+3}{5}-\left(\frac{1\times 8+3}{8}-\left(\frac{3}{4}-\frac{1}{2}-\frac{1}{4}\right)\right)\right)
Multiply 3 and 5 to get 15.
\frac{43}{8}-\left(\frac{18}{5}-\left(\frac{1\times 8+3}{8}-\left(\frac{3}{4}-\frac{1}{2}-\frac{1}{4}\right)\right)\right)
Add 15 and 3 to get 18.
\frac{43}{8}-\left(\frac{18}{5}-\left(\frac{8+3}{8}-\left(\frac{3}{4}-\frac{1}{2}-\frac{1}{4}\right)\right)\right)
Multiply 1 and 8 to get 8.
\frac{43}{8}-\left(\frac{18}{5}-\left(\frac{11}{8}-\left(\frac{3}{4}-\frac{1}{2}-\frac{1}{4}\right)\right)\right)
Add 8 and 3 to get 11.
\frac{43}{8}-\left(\frac{18}{5}-\left(\frac{11}{8}-\left(\frac{3}{4}-\frac{2}{4}-\frac{1}{4}\right)\right)\right)
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{43}{8}-\left(\frac{18}{5}-\left(\frac{11}{8}-\left(\frac{3-2}{4}-\frac{1}{4}\right)\right)\right)
Since \frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{43}{8}-\left(\frac{18}{5}-\left(\frac{11}{8}-\left(\frac{1}{4}-\frac{1}{4}\right)\right)\right)
Subtract 2 from 3 to get 1.
\frac{43}{8}-\left(\frac{18}{5}-\left(\frac{11}{8}-0\right)\right)
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
\frac{43}{8}-\left(\frac{18}{5}-\frac{11}{8}\right)
Subtract 0 from \frac{11}{8} to get \frac{11}{8}.
\frac{43}{8}-\left(\frac{144}{40}-\frac{55}{40}\right)
Least common multiple of 5 and 8 is 40. Convert \frac{18}{5} and \frac{11}{8} to fractions with denominator 40.
\frac{43}{8}-\frac{144-55}{40}
Since \frac{144}{40} and \frac{55}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{43}{8}-\frac{89}{40}
Subtract 55 from 144 to get 89.
\frac{215}{40}-\frac{89}{40}
Least common multiple of 8 and 40 is 40. Convert \frac{43}{8} and \frac{89}{40} to fractions with denominator 40.
\frac{215-89}{40}
Since \frac{215}{40} and \frac{89}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{126}{40}
Subtract 89 from 215 to get 126.
\frac{63}{20}
Reduce the fraction \frac{126}{40} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}