Evaluate
\frac{1159}{24}\approx 48.291666667
Factor
\frac{19 \cdot 61}{2 ^ {3} \cdot 3} = 48\frac{7}{24} = 48.291666666666664
Quiz
Arithmetic
5 problems similar to:
5 \frac { 3 } { 8 } + 19 \frac { 1 } { 4 } + 23 \frac { 2 } { 3 }
Share
Copied to clipboard
\frac{40+3}{8}+\frac{19\times 4+1}{4}+\frac{23\times 3+2}{3}
Multiply 5 and 8 to get 40.
\frac{43}{8}+\frac{19\times 4+1}{4}+\frac{23\times 3+2}{3}
Add 40 and 3 to get 43.
\frac{43}{8}+\frac{76+1}{4}+\frac{23\times 3+2}{3}
Multiply 19 and 4 to get 76.
\frac{43}{8}+\frac{77}{4}+\frac{23\times 3+2}{3}
Add 76 and 1 to get 77.
\frac{43}{8}+\frac{154}{8}+\frac{23\times 3+2}{3}
Least common multiple of 8 and 4 is 8. Convert \frac{43}{8} and \frac{77}{4} to fractions with denominator 8.
\frac{43+154}{8}+\frac{23\times 3+2}{3}
Since \frac{43}{8} and \frac{154}{8} have the same denominator, add them by adding their numerators.
\frac{197}{8}+\frac{23\times 3+2}{3}
Add 43 and 154 to get 197.
\frac{197}{8}+\frac{69+2}{3}
Multiply 23 and 3 to get 69.
\frac{197}{8}+\frac{71}{3}
Add 69 and 2 to get 71.
\frac{591}{24}+\frac{568}{24}
Least common multiple of 8 and 3 is 24. Convert \frac{197}{8} and \frac{71}{3} to fractions with denominator 24.
\frac{591+568}{24}
Since \frac{591}{24} and \frac{568}{24} have the same denominator, add them by adding their numerators.
\frac{1159}{24}
Add 591 and 568 to get 1159.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}