Evaluate
\frac{82}{15}\approx 5.466666667
Factor
\frac{2 \cdot 41}{3 \cdot 5} = 5\frac{7}{15} = 5.466666666666667
Share
Copied to clipboard
\frac{15+2}{3}-\frac{\frac{3\times 3+1}{3}}{\frac{2\times 3+2}{3}}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Multiply 5 and 3 to get 15.
\frac{17}{3}-\frac{\frac{3\times 3+1}{3}}{\frac{2\times 3+2}{3}}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Add 15 and 2 to get 17.
\frac{17}{3}-\frac{\left(3\times 3+1\right)\times 3}{3\left(2\times 3+2\right)}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Divide \frac{3\times 3+1}{3} by \frac{2\times 3+2}{3} by multiplying \frac{3\times 3+1}{3} by the reciprocal of \frac{2\times 3+2}{3}.
\frac{17}{3}-\frac{1+3\times 3}{2+2\times 3}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Cancel out 3 in both numerator and denominator.
\frac{17}{3}-\frac{1+9}{2+2\times 3}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Multiply 3 and 3 to get 9.
\frac{17}{3}-\frac{10}{2+2\times 3}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Add 1 and 9 to get 10.
\frac{17}{3}-\frac{10}{2+6}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Multiply 2 and 3 to get 6.
\frac{17}{3}-\frac{10}{8}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Add 2 and 6 to get 8.
\frac{17}{3}-\frac{5}{4}\times \frac{4}{5}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Reduce the fraction \frac{10}{8} to lowest terms by extracting and canceling out 2.
\frac{17}{3}-1+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Cancel out \frac{5}{4} and its reciprocal \frac{4}{5}.
\frac{17}{3}-\frac{3}{3}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Convert 1 to fraction \frac{3}{3}.
\frac{17-3}{3}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Since \frac{17}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{14}{3}+\frac{\frac{2\times 5+1}{5}}{\frac{2\times 4+3}{4}}
Subtract 3 from 17 to get 14.
\frac{14}{3}+\frac{\left(2\times 5+1\right)\times 4}{5\left(2\times 4+3\right)}
Divide \frac{2\times 5+1}{5} by \frac{2\times 4+3}{4} by multiplying \frac{2\times 5+1}{5} by the reciprocal of \frac{2\times 4+3}{4}.
\frac{14}{3}+\frac{\left(10+1\right)\times 4}{5\left(2\times 4+3\right)}
Multiply 2 and 5 to get 10.
\frac{14}{3}+\frac{11\times 4}{5\left(2\times 4+3\right)}
Add 10 and 1 to get 11.
\frac{14}{3}+\frac{44}{5\left(2\times 4+3\right)}
Multiply 11 and 4 to get 44.
\frac{14}{3}+\frac{44}{5\left(8+3\right)}
Multiply 2 and 4 to get 8.
\frac{14}{3}+\frac{44}{5\times 11}
Add 8 and 3 to get 11.
\frac{14}{3}+\frac{44}{55}
Multiply 5 and 11 to get 55.
\frac{14}{3}+\frac{4}{5}
Reduce the fraction \frac{44}{55} to lowest terms by extracting and canceling out 11.
\frac{70}{15}+\frac{12}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{14}{3} and \frac{4}{5} to fractions with denominator 15.
\frac{70+12}{15}
Since \frac{70}{15} and \frac{12}{15} have the same denominator, add them by adding their numerators.
\frac{82}{15}
Add 70 and 12 to get 82.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}