Evaluate
-\frac{1439}{144}\approx -9.993055556
Factor
-\frac{1439}{144} = -9\frac{143}{144} = -9.993055555555555
Share
Copied to clipboard
\frac{15+2}{3}\times \frac{1}{6}-\frac{4\times 8+3}{8}\times \frac{2\times 2+1}{2}
Multiply 5 and 3 to get 15.
\frac{17}{3}\times \frac{1}{6}-\frac{4\times 8+3}{8}\times \frac{2\times 2+1}{2}
Add 15 and 2 to get 17.
\frac{17\times 1}{3\times 6}-\frac{4\times 8+3}{8}\times \frac{2\times 2+1}{2}
Multiply \frac{17}{3} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{17}{18}-\frac{4\times 8+3}{8}\times \frac{2\times 2+1}{2}
Do the multiplications in the fraction \frac{17\times 1}{3\times 6}.
\frac{17}{18}-\frac{32+3}{8}\times \frac{2\times 2+1}{2}
Multiply 4 and 8 to get 32.
\frac{17}{18}-\frac{35}{8}\times \frac{2\times 2+1}{2}
Add 32 and 3 to get 35.
\frac{17}{18}-\frac{35}{8}\times \frac{4+1}{2}
Multiply 2 and 2 to get 4.
\frac{17}{18}-\frac{35}{8}\times \frac{5}{2}
Add 4 and 1 to get 5.
\frac{17}{18}-\frac{35\times 5}{8\times 2}
Multiply \frac{35}{8} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{17}{18}-\frac{175}{16}
Do the multiplications in the fraction \frac{35\times 5}{8\times 2}.
\frac{136}{144}-\frac{1575}{144}
Least common multiple of 18 and 16 is 144. Convert \frac{17}{18} and \frac{175}{16} to fractions with denominator 144.
\frac{136-1575}{144}
Since \frac{136}{144} and \frac{1575}{144} have the same denominator, subtract them by subtracting their numerators.
-\frac{1439}{144}
Subtract 1575 from 136 to get -1439.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}