Evaluate
\frac{37}{6}\approx 6.166666667
Factor
\frac{37}{2 \cdot 3} = 6\frac{1}{6} = 6.166666666666667
Quiz
Arithmetic
5 problems similar to:
5 \frac { 1 } { 5 } - 3 \frac { 3 } { 10 } + 4 \frac { 4 } { 15 }
Share
Copied to clipboard
\frac{25+1}{5}-\frac{3\times 10+3}{10}+\frac{4\times 15+4}{15}
Multiply 5 and 5 to get 25.
\frac{26}{5}-\frac{3\times 10+3}{10}+\frac{4\times 15+4}{15}
Add 25 and 1 to get 26.
\frac{26}{5}-\frac{30+3}{10}+\frac{4\times 15+4}{15}
Multiply 3 and 10 to get 30.
\frac{26}{5}-\frac{33}{10}+\frac{4\times 15+4}{15}
Add 30 and 3 to get 33.
\frac{52}{10}-\frac{33}{10}+\frac{4\times 15+4}{15}
Least common multiple of 5 and 10 is 10. Convert \frac{26}{5} and \frac{33}{10} to fractions with denominator 10.
\frac{52-33}{10}+\frac{4\times 15+4}{15}
Since \frac{52}{10} and \frac{33}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{10}+\frac{4\times 15+4}{15}
Subtract 33 from 52 to get 19.
\frac{19}{10}+\frac{60+4}{15}
Multiply 4 and 15 to get 60.
\frac{19}{10}+\frac{64}{15}
Add 60 and 4 to get 64.
\frac{57}{30}+\frac{128}{30}
Least common multiple of 10 and 15 is 30. Convert \frac{19}{10} and \frac{64}{15} to fractions with denominator 30.
\frac{57+128}{30}
Since \frac{57}{30} and \frac{128}{30} have the same denominator, add them by adding their numerators.
\frac{185}{30}
Add 57 and 128 to get 185.
\frac{37}{6}
Reduce the fraction \frac{185}{30} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}