5 \frac { 1 } { 5 } \% \text { of } 200 kg
Evaluate
\frac{52gk}{5}
Expand
\frac{52gk}{5}
Share
Copied to clipboard
\frac{5\times 5+1}{5\times 100}\times 200kg
Express \frac{\frac{5\times 5+1}{5}}{100} as a single fraction.
\frac{25+1}{5\times 100}\times 200kg
Multiply 5 and 5 to get 25.
\frac{26}{5\times 100}\times 200kg
Add 25 and 1 to get 26.
\frac{26}{500}\times 200kg
Multiply 5 and 100 to get 500.
\frac{13}{250}\times 200kg
Reduce the fraction \frac{26}{500} to lowest terms by extracting and canceling out 2.
\frac{13\times 200}{250}kg
Express \frac{13}{250}\times 200 as a single fraction.
\frac{2600}{250}kg
Multiply 13 and 200 to get 2600.
\frac{52}{5}kg
Reduce the fraction \frac{2600}{250} to lowest terms by extracting and canceling out 50.
\frac{5\times 5+1}{5\times 100}\times 200kg
Express \frac{\frac{5\times 5+1}{5}}{100} as a single fraction.
\frac{25+1}{5\times 100}\times 200kg
Multiply 5 and 5 to get 25.
\frac{26}{5\times 100}\times 200kg
Add 25 and 1 to get 26.
\frac{26}{500}\times 200kg
Multiply 5 and 100 to get 500.
\frac{13}{250}\times 200kg
Reduce the fraction \frac{26}{500} to lowest terms by extracting and canceling out 2.
\frac{13\times 200}{250}kg
Express \frac{13}{250}\times 200 as a single fraction.
\frac{2600}{250}kg
Multiply 13 and 200 to get 2600.
\frac{52}{5}kg
Reduce the fraction \frac{2600}{250} to lowest terms by extracting and canceling out 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}