Evaluate
\frac{7}{12}\approx 0.583333333
Factor
\frac{7}{2 ^ {2} \cdot 3} = 0.5833333333333334
Share
Copied to clipboard
\frac{20+1}{4}-\frac{2\times 3+2}{3}\times \frac{1\times 4+3}{4}
Multiply 5 and 4 to get 20.
\frac{21}{4}-\frac{2\times 3+2}{3}\times \frac{1\times 4+3}{4}
Add 20 and 1 to get 21.
\frac{21}{4}-\frac{6+2}{3}\times \frac{1\times 4+3}{4}
Multiply 2 and 3 to get 6.
\frac{21}{4}-\frac{8}{3}\times \frac{1\times 4+3}{4}
Add 6 and 2 to get 8.
\frac{21}{4}-\frac{8}{3}\times \frac{4+3}{4}
Multiply 1 and 4 to get 4.
\frac{21}{4}-\frac{8}{3}\times \frac{7}{4}
Add 4 and 3 to get 7.
\frac{21}{4}-\frac{8\times 7}{3\times 4}
Multiply \frac{8}{3} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{4}-\frac{56}{12}
Do the multiplications in the fraction \frac{8\times 7}{3\times 4}.
\frac{21}{4}-\frac{14}{3}
Reduce the fraction \frac{56}{12} to lowest terms by extracting and canceling out 4.
\frac{63}{12}-\frac{56}{12}
Least common multiple of 4 and 3 is 12. Convert \frac{21}{4} and \frac{14}{3} to fractions with denominator 12.
\frac{63-56}{12}
Since \frac{63}{12} and \frac{56}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{12}
Subtract 56 from 63 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}