Solve for m
m=0
Share
Copied to clipboard
\left(5\times 2+1\right)m=51m
Multiply both sides of the equation by 2.
\left(10+1\right)m=51m
Multiply 5 and 2 to get 10.
11m=51m
Add 10 and 1 to get 11.
11m-51m=0
Subtract 51m from both sides.
-40m=0
Combine 11m and -51m to get -40m.
m=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -40 is not equal to 0, m must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}