Evaluate
\frac{22}{15}\approx 1.466666667
Factor
\frac{2 \cdot 11}{3 \cdot 5} = 1\frac{7}{15} = 1.4666666666666666
Share
Copied to clipboard
\frac{10+1}{2}\left(\frac{2}{3}-\frac{3}{5}\right)+\frac{\frac{1}{2}}{\frac{5}{11}}
Multiply 5 and 2 to get 10.
\frac{11}{2}\left(\frac{2}{3}-\frac{3}{5}\right)+\frac{\frac{1}{2}}{\frac{5}{11}}
Add 10 and 1 to get 11.
\frac{11}{2}\left(\frac{10}{15}-\frac{9}{15}\right)+\frac{\frac{1}{2}}{\frac{5}{11}}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{3}{5} to fractions with denominator 15.
\frac{11}{2}\times \frac{10-9}{15}+\frac{\frac{1}{2}}{\frac{5}{11}}
Since \frac{10}{15} and \frac{9}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{2}\times \frac{1}{15}+\frac{\frac{1}{2}}{\frac{5}{11}}
Subtract 9 from 10 to get 1.
\frac{11\times 1}{2\times 15}+\frac{\frac{1}{2}}{\frac{5}{11}}
Multiply \frac{11}{2} times \frac{1}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{30}+\frac{\frac{1}{2}}{\frac{5}{11}}
Do the multiplications in the fraction \frac{11\times 1}{2\times 15}.
\frac{11}{30}+\frac{1}{2}\times \frac{11}{5}
Divide \frac{1}{2} by \frac{5}{11} by multiplying \frac{1}{2} by the reciprocal of \frac{5}{11}.
\frac{11}{30}+\frac{1\times 11}{2\times 5}
Multiply \frac{1}{2} times \frac{11}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{30}+\frac{11}{10}
Do the multiplications in the fraction \frac{1\times 11}{2\times 5}.
\frac{11}{30}+\frac{33}{30}
Least common multiple of 30 and 10 is 30. Convert \frac{11}{30} and \frac{11}{10} to fractions with denominator 30.
\frac{11+33}{30}
Since \frac{11}{30} and \frac{33}{30} have the same denominator, add them by adding their numerators.
\frac{44}{30}
Add 11 and 33 to get 44.
\frac{22}{15}
Reduce the fraction \frac{44}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}