Evaluate
\frac{193}{48}\approx 4.020833333
Factor
\frac{193}{2 ^ {4} \cdot 3} = 4\frac{1}{48} = 4.020833333333333
Share
Copied to clipboard
\frac{\left(5\times 2+1\right)\times 9}{2\times 8}-\frac{2\times 6+1}{6}
Divide \frac{5\times 2+1}{2} by \frac{8}{9} by multiplying \frac{5\times 2+1}{2} by the reciprocal of \frac{8}{9}.
\frac{\left(10+1\right)\times 9}{2\times 8}-\frac{2\times 6+1}{6}
Multiply 5 and 2 to get 10.
\frac{11\times 9}{2\times 8}-\frac{2\times 6+1}{6}
Add 10 and 1 to get 11.
\frac{99}{2\times 8}-\frac{2\times 6+1}{6}
Multiply 11 and 9 to get 99.
\frac{99}{16}-\frac{2\times 6+1}{6}
Multiply 2 and 8 to get 16.
\frac{99}{16}-\frac{12+1}{6}
Multiply 2 and 6 to get 12.
\frac{99}{16}-\frac{13}{6}
Add 12 and 1 to get 13.
\frac{297}{48}-\frac{104}{48}
Least common multiple of 16 and 6 is 48. Convert \frac{99}{16} and \frac{13}{6} to fractions with denominator 48.
\frac{297-104}{48}
Since \frac{297}{48} and \frac{104}{48} have the same denominator, subtract them by subtracting their numerators.
\frac{193}{48}
Subtract 104 from 297 to get 193.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}