Solve for x
x=24
Graph
Share
Copied to clipboard
5=0.2\left(x+1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
5=0.2x+0.2
Use the distributive property to multiply 0.2 by x+1.
0.2x+0.2=5
Swap sides so that all variable terms are on the left hand side.
0.2x=5-0.2
Subtract 0.2 from both sides.
0.2x=4.8
Subtract 0.2 from 5 to get 4.8.
x=\frac{4.8}{0.2}
Divide both sides by 0.2.
x=\frac{48}{2}
Expand \frac{4.8}{0.2} by multiplying both numerator and the denominator by 10.
x=24
Divide 48 by 2 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}