Solve for x
x = \frac{184}{5} = 36\frac{4}{5} = 36.8
Graph
Share
Copied to clipboard
15\left(8+4\right)+4^{2}-x=4x+3\times 4
Multiply 5 and 3 to get 15.
15\times 12+4^{2}-x=4x+3\times 4
Add 8 and 4 to get 12.
180+4^{2}-x=4x+3\times 4
Multiply 15 and 12 to get 180.
180+16-x=4x+3\times 4
Calculate 4 to the power of 2 and get 16.
196-x=4x+3\times 4
Add 180 and 16 to get 196.
196-x=4x+12
Multiply 3 and 4 to get 12.
196-x-4x=12
Subtract 4x from both sides.
196-5x=12
Combine -x and -4x to get -5x.
-5x=12-196
Subtract 196 from both sides.
-5x=-184
Subtract 196 from 12 to get -184.
x=\frac{-184}{-5}
Divide both sides by -5.
x=\frac{184}{5}
Fraction \frac{-184}{-5} can be simplified to \frac{184}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}