Solve for x
x=1
Graph
Share
Copied to clipboard
\left(5\sqrt{2x-1}\right)^{2}=\left(\sqrt{x+24}\right)^{2}
Square both sides of the equation.
5^{2}\left(\sqrt{2x-1}\right)^{2}=\left(\sqrt{x+24}\right)^{2}
Expand \left(5\sqrt{2x-1}\right)^{2}.
25\left(\sqrt{2x-1}\right)^{2}=\left(\sqrt{x+24}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25\left(2x-1\right)=\left(\sqrt{x+24}\right)^{2}
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
50x-25=\left(\sqrt{x+24}\right)^{2}
Use the distributive property to multiply 25 by 2x-1.
50x-25=x+24
Calculate \sqrt{x+24} to the power of 2 and get x+24.
50x-25-x=24
Subtract x from both sides.
49x-25=24
Combine 50x and -x to get 49x.
49x=24+25
Add 25 to both sides.
49x=49
Add 24 and 25 to get 49.
x=\frac{49}{49}
Divide both sides by 49.
x=1
Divide 49 by 49 to get 1.
5\sqrt{2\times 1-1}=\sqrt{1+24}
Substitute 1 for x in the equation 5\sqrt{2x-1}=\sqrt{x+24}.
5=5
Simplify. The value x=1 satisfies the equation.
x=1
Equation 5\sqrt{2x-1}=\sqrt{x+24} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}