Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(25-a^{2}\right)\left(25+a^{2}\right)
Rewrite 625-a^{4} as 25^{2}-\left(a^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-a^{2}+25\right)\left(a^{2}+25\right)
Reorder the terms.
\left(5-a\right)\left(5+a\right)
Consider -a^{2}+25. Rewrite -a^{2}+25 as 5^{2}-a^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-a+5\right)\left(a+5\right)
Reorder the terms.
\left(-a+5\right)\left(a+5\right)\left(a^{2}+25\right)
Rewrite the complete factored expression. Polynomial a^{2}+25 is not factored since it does not have any rational roots.
625-a^{4}
Calculate 5 to the power of 4 and get 625.