Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25-x^{2}=\left(10-2x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25-x^{2}=100-40x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2x\right)^{2}.
25-x^{2}-100=-40x+4x^{2}
Subtract 100 from both sides.
-75-x^{2}=-40x+4x^{2}
Subtract 100 from 25 to get -75.
-75-x^{2}+40x=4x^{2}
Add 40x to both sides.
-75-x^{2}+40x-4x^{2}=0
Subtract 4x^{2} from both sides.
-75-5x^{2}+40x=0
Combine -x^{2} and -4x^{2} to get -5x^{2}.
-15-x^{2}+8x=0
Divide both sides by 5.
-x^{2}+8x-15=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-\left(-15\right)=15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=5 b=3
The solution is the pair that gives sum 8.
\left(-x^{2}+5x\right)+\left(3x-15\right)
Rewrite -x^{2}+8x-15 as \left(-x^{2}+5x\right)+\left(3x-15\right).
-x\left(x-5\right)+3\left(x-5\right)
Factor out -x in the first and 3 in the second group.
\left(x-5\right)\left(-x+3\right)
Factor out common term x-5 by using distributive property.
x=5 x=3
To find equation solutions, solve x-5=0 and -x+3=0.
25-x^{2}=\left(10-2x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25-x^{2}=100-40x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2x\right)^{2}.
25-x^{2}-100=-40x+4x^{2}
Subtract 100 from both sides.
-75-x^{2}=-40x+4x^{2}
Subtract 100 from 25 to get -75.
-75-x^{2}+40x=4x^{2}
Add 40x to both sides.
-75-x^{2}+40x-4x^{2}=0
Subtract 4x^{2} from both sides.
-75-5x^{2}+40x=0
Combine -x^{2} and -4x^{2} to get -5x^{2}.
-5x^{2}+40x-75=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\left(-5\right)\left(-75\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 40 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-5\right)\left(-75\right)}}{2\left(-5\right)}
Square 40.
x=\frac{-40±\sqrt{1600+20\left(-75\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-40±\sqrt{1600-1500}}{2\left(-5\right)}
Multiply 20 times -75.
x=\frac{-40±\sqrt{100}}{2\left(-5\right)}
Add 1600 to -1500.
x=\frac{-40±10}{2\left(-5\right)}
Take the square root of 100.
x=\frac{-40±10}{-10}
Multiply 2 times -5.
x=-\frac{30}{-10}
Now solve the equation x=\frac{-40±10}{-10} when ± is plus. Add -40 to 10.
x=3
Divide -30 by -10.
x=-\frac{50}{-10}
Now solve the equation x=\frac{-40±10}{-10} when ± is minus. Subtract 10 from -40.
x=5
Divide -50 by -10.
x=3 x=5
The equation is now solved.
25-x^{2}=\left(10-2x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25-x^{2}=100-40x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2x\right)^{2}.
25-x^{2}+40x=100+4x^{2}
Add 40x to both sides.
25-x^{2}+40x-4x^{2}=100
Subtract 4x^{2} from both sides.
25-5x^{2}+40x=100
Combine -x^{2} and -4x^{2} to get -5x^{2}.
-5x^{2}+40x=100-25
Subtract 25 from both sides.
-5x^{2}+40x=75
Subtract 25 from 100 to get 75.
\frac{-5x^{2}+40x}{-5}=\frac{75}{-5}
Divide both sides by -5.
x^{2}+\frac{40}{-5}x=\frac{75}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-8x=\frac{75}{-5}
Divide 40 by -5.
x^{2}-8x=-15
Divide 75 by -5.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-15+16
Square -4.
x^{2}-8x+16=1
Add -15 to 16.
\left(x-4\right)^{2}=1
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-4=1 x-4=-1
Simplify.
x=5 x=3
Add 4 to both sides of the equation.