Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

25+15^{2}=\left(2r\right)^{2}
Calculate 5 to the power of 2 and get 25.
25+225=\left(2r\right)^{2}
Calculate 15 to the power of 2 and get 225.
250=\left(2r\right)^{2}
Add 25 and 225 to get 250.
250=2^{2}r^{2}
Expand \left(2r\right)^{2}.
250=4r^{2}
Calculate 2 to the power of 2 and get 4.
4r^{2}=250
Swap sides so that all variable terms are on the left hand side.
r^{2}=\frac{250}{4}
Divide both sides by 4.
r^{2}=\frac{125}{2}
Reduce the fraction \frac{250}{4} to lowest terms by extracting and canceling out 2.
r=\frac{5\sqrt{10}}{2} r=-\frac{5\sqrt{10}}{2}
Take the square root of both sides of the equation.
25+15^{2}=\left(2r\right)^{2}
Calculate 5 to the power of 2 and get 25.
25+225=\left(2r\right)^{2}
Calculate 15 to the power of 2 and get 225.
250=\left(2r\right)^{2}
Add 25 and 225 to get 250.
250=2^{2}r^{2}
Expand \left(2r\right)^{2}.
250=4r^{2}
Calculate 2 to the power of 2 and get 4.
4r^{2}=250
Swap sides so that all variable terms are on the left hand side.
4r^{2}-250=0
Subtract 250 from both sides.
r=\frac{0±\sqrt{0^{2}-4\times 4\left(-250\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 4\left(-250\right)}}{2\times 4}
Square 0.
r=\frac{0±\sqrt{-16\left(-250\right)}}{2\times 4}
Multiply -4 times 4.
r=\frac{0±\sqrt{4000}}{2\times 4}
Multiply -16 times -250.
r=\frac{0±20\sqrt{10}}{2\times 4}
Take the square root of 4000.
r=\frac{0±20\sqrt{10}}{8}
Multiply 2 times 4.
r=\frac{5\sqrt{10}}{2}
Now solve the equation r=\frac{0±20\sqrt{10}}{8} when ± is plus.
r=-\frac{5\sqrt{10}}{2}
Now solve the equation r=\frac{0±20\sqrt{10}}{8} when ± is minus.
r=\frac{5\sqrt{10}}{2} r=-\frac{5\sqrt{10}}{2}
The equation is now solved.