Solve for V
V = -\frac{235}{144} = -1\frac{91}{144} \approx -1.631944444
Solve for x (complex solution)
x\in \mathrm{C}
V = -\frac{235}{144} = -1\frac{91}{144} = -1.6319444444444444
Solve for x
x\in \mathrm{R}
V = -\frac{235}{144} = -1\frac{91}{144} = -1.6319444444444444
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(5)=V\times 14400-120\left(-80\right)+\left(-80\right)^{2}+3\times 50^{2}
Calculate 120 to the power of 2 and get 14400.
\frac{\mathrm{d}}{\mathrm{d}x}(5)=V\times 14400-\left(-9600\right)+\left(-80\right)^{2}+3\times 50^{2}
Multiply 120 and -80 to get -9600.
\frac{\mathrm{d}}{\mathrm{d}x}(5)=V\times 14400+9600+\left(-80\right)^{2}+3\times 50^{2}
The opposite of -9600 is 9600.
\frac{\mathrm{d}}{\mathrm{d}x}(5)=V\times 14400+9600+6400+3\times 50^{2}
Calculate -80 to the power of 2 and get 6400.
\frac{\mathrm{d}}{\mathrm{d}x}(5)=V\times 14400+16000+3\times 50^{2}
Add 9600 and 6400 to get 16000.
\frac{\mathrm{d}}{\mathrm{d}x}(5)=V\times 14400+16000+3\times 2500
Calculate 50 to the power of 2 and get 2500.
\frac{\mathrm{d}}{\mathrm{d}x}(5)=V\times 14400+16000+7500
Multiply 3 and 2500 to get 7500.
\frac{\mathrm{d}}{\mathrm{d}x}(5)=V\times 14400+23500
Add 16000 and 7500 to get 23500.
V\times 14400+23500=\frac{\mathrm{d}}{\mathrm{d}x}(5)
Swap sides so that all variable terms are on the left hand side.
V\times 14400=\frac{\mathrm{d}}{\mathrm{d}x}(5)-23500
Subtract 23500 from both sides.
14400V=-23500
The equation is in standard form.
\frac{14400V}{14400}=-\frac{23500}{14400}
Divide both sides by 14400.
V=-\frac{23500}{14400}
Dividing by 14400 undoes the multiplication by 14400.
V=-\frac{235}{144}
Reduce the fraction \frac{-23500}{14400} to lowest terms by extracting and canceling out 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}