Solve for x
x=\frac{55x_{5}-5}{4}
Solve for x_5
x_{5}=\frac{4x}{55}+\frac{1}{11}
Graph
Share
Copied to clipboard
x_{5}\times 55-4x=5
Swap sides so that all variable terms are on the left hand side.
-4x=5-x_{5}\times 55
Subtract x_{5}\times 55 from both sides.
-4x=5-55x_{5}
Multiply -1 and 55 to get -55.
\frac{-4x}{-4}=\frac{5-55x_{5}}{-4}
Divide both sides by -4.
x=\frac{5-55x_{5}}{-4}
Dividing by -4 undoes the multiplication by -4.
x=\frac{55x_{5}-5}{4}
Divide 5-55x_{5} by -4.
x_{5}\times 55-4x=5
Swap sides so that all variable terms are on the left hand side.
x_{5}\times 55=5+4x
Add 4x to both sides.
55x_{5}=4x+5
The equation is in standard form.
\frac{55x_{5}}{55}=\frac{4x+5}{55}
Divide both sides by 55.
x_{5}=\frac{4x+5}{55}
Dividing by 55 undoes the multiplication by 55.
x_{5}=\frac{4x}{55}+\frac{1}{11}
Divide 5+4x by 55.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}