Solve for r
r=\frac{\sqrt{19}-3}{4}\approx 0.339724736
r=\frac{-\sqrt{19}-3}{4}\approx -1.839724736
Share
Copied to clipboard
5=8r^{2}+12r
Use the distributive property to multiply 4r by 2r+3.
8r^{2}+12r=5
Swap sides so that all variable terms are on the left hand side.
8r^{2}+12r-5=0
Subtract 5 from both sides.
r=\frac{-12±\sqrt{12^{2}-4\times 8\left(-5\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 12 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-12±\sqrt{144-4\times 8\left(-5\right)}}{2\times 8}
Square 12.
r=\frac{-12±\sqrt{144-32\left(-5\right)}}{2\times 8}
Multiply -4 times 8.
r=\frac{-12±\sqrt{144+160}}{2\times 8}
Multiply -32 times -5.
r=\frac{-12±\sqrt{304}}{2\times 8}
Add 144 to 160.
r=\frac{-12±4\sqrt{19}}{2\times 8}
Take the square root of 304.
r=\frac{-12±4\sqrt{19}}{16}
Multiply 2 times 8.
r=\frac{4\sqrt{19}-12}{16}
Now solve the equation r=\frac{-12±4\sqrt{19}}{16} when ± is plus. Add -12 to 4\sqrt{19}.
r=\frac{\sqrt{19}-3}{4}
Divide -12+4\sqrt{19} by 16.
r=\frac{-4\sqrt{19}-12}{16}
Now solve the equation r=\frac{-12±4\sqrt{19}}{16} when ± is minus. Subtract 4\sqrt{19} from -12.
r=\frac{-\sqrt{19}-3}{4}
Divide -12-4\sqrt{19} by 16.
r=\frac{\sqrt{19}-3}{4} r=\frac{-\sqrt{19}-3}{4}
The equation is now solved.
5=8r^{2}+12r
Use the distributive property to multiply 4r by 2r+3.
8r^{2}+12r=5
Swap sides so that all variable terms are on the left hand side.
\frac{8r^{2}+12r}{8}=\frac{5}{8}
Divide both sides by 8.
r^{2}+\frac{12}{8}r=\frac{5}{8}
Dividing by 8 undoes the multiplication by 8.
r^{2}+\frac{3}{2}r=\frac{5}{8}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
r^{2}+\frac{3}{2}r+\left(\frac{3}{4}\right)^{2}=\frac{5}{8}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+\frac{3}{2}r+\frac{9}{16}=\frac{5}{8}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
r^{2}+\frac{3}{2}r+\frac{9}{16}=\frac{19}{16}
Add \frac{5}{8} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(r+\frac{3}{4}\right)^{2}=\frac{19}{16}
Factor r^{2}+\frac{3}{2}r+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{3}{4}\right)^{2}}=\sqrt{\frac{19}{16}}
Take the square root of both sides of the equation.
r+\frac{3}{4}=\frac{\sqrt{19}}{4} r+\frac{3}{4}=-\frac{\sqrt{19}}{4}
Simplify.
r=\frac{\sqrt{19}-3}{4} r=\frac{-\sqrt{19}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}