Solve for c
c=\frac{3x}{5}
x\neq 0
Solve for x
x=\frac{5c}{3}
c\neq 0
Graph
Share
Copied to clipboard
5c=c\times 25-12x
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c.
5c-c\times 25=-12x
Subtract c\times 25 from both sides.
-20c=-12x
Combine 5c and -c\times 25 to get -20c.
\frac{-20c}{-20}=-\frac{12x}{-20}
Divide both sides by -20.
c=-\frac{12x}{-20}
Dividing by -20 undoes the multiplication by -20.
c=\frac{3x}{5}
Divide -12x by -20.
c=\frac{3x}{5}\text{, }c\neq 0
Variable c cannot be equal to 0.
5c=c\times 25-12x
Multiply both sides of the equation by c.
c\times 25-12x=5c
Swap sides so that all variable terms are on the left hand side.
-12x=5c-c\times 25
Subtract c\times 25 from both sides.
-12x=-20c
Combine 5c and -c\times 25 to get -20c.
\frac{-12x}{-12}=-\frac{20c}{-12}
Divide both sides by -12.
x=-\frac{20c}{-12}
Dividing by -12 undoes the multiplication by -12.
x=\frac{5c}{3}
Divide -20c by -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}