Solve for t
t=\sqrt{2}-1\approx 0.414213562
t=-\sqrt{2}-1\approx -2.414213562
Share
Copied to clipboard
10t+5t^{2}=5
Swap sides so that all variable terms are on the left hand side.
10t+5t^{2}-5=0
Subtract 5 from both sides.
5t^{2}+10t-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10±\sqrt{10^{2}-4\times 5\left(-5\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 10 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±\sqrt{100-4\times 5\left(-5\right)}}{2\times 5}
Square 10.
t=\frac{-10±\sqrt{100-20\left(-5\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{-10±\sqrt{100+100}}{2\times 5}
Multiply -20 times -5.
t=\frac{-10±\sqrt{200}}{2\times 5}
Add 100 to 100.
t=\frac{-10±10\sqrt{2}}{2\times 5}
Take the square root of 200.
t=\frac{-10±10\sqrt{2}}{10}
Multiply 2 times 5.
t=\frac{10\sqrt{2}-10}{10}
Now solve the equation t=\frac{-10±10\sqrt{2}}{10} when ± is plus. Add -10 to 10\sqrt{2}.
t=\sqrt{2}-1
Divide -10+10\sqrt{2} by 10.
t=\frac{-10\sqrt{2}-10}{10}
Now solve the equation t=\frac{-10±10\sqrt{2}}{10} when ± is minus. Subtract 10\sqrt{2} from -10.
t=-\sqrt{2}-1
Divide -10-10\sqrt{2} by 10.
t=\sqrt{2}-1 t=-\sqrt{2}-1
The equation is now solved.
10t+5t^{2}=5
Swap sides so that all variable terms are on the left hand side.
5t^{2}+10t=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5t^{2}+10t}{5}=\frac{5}{5}
Divide both sides by 5.
t^{2}+\frac{10}{5}t=\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}+2t=\frac{5}{5}
Divide 10 by 5.
t^{2}+2t=1
Divide 5 by 5.
t^{2}+2t+1^{2}=1+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+2t+1=1+1
Square 1.
t^{2}+2t+1=2
Add 1 to 1.
\left(t+1\right)^{2}=2
Factor t^{2}+2t+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+1\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
t+1=\sqrt{2} t+1=-\sqrt{2}
Simplify.
t=\sqrt{2}-1 t=-\sqrt{2}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}