Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{60}x^{2}+\frac{139}{60}x=5
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{60}x^{2}+\frac{139}{60}x-5=0
Subtract 5 from both sides.
x=\frac{-\frac{139}{60}±\sqrt{\left(\frac{139}{60}\right)^{2}-4\left(-\frac{1}{60}\right)\left(-5\right)}}{2\left(-\frac{1}{60}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{60} for a, \frac{139}{60} for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{139}{60}±\sqrt{\frac{19321}{3600}-4\left(-\frac{1}{60}\right)\left(-5\right)}}{2\left(-\frac{1}{60}\right)}
Square \frac{139}{60} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{139}{60}±\sqrt{\frac{19321}{3600}+\frac{1}{15}\left(-5\right)}}{2\left(-\frac{1}{60}\right)}
Multiply -4 times -\frac{1}{60}.
x=\frac{-\frac{139}{60}±\sqrt{\frac{19321}{3600}-\frac{1}{3}}}{2\left(-\frac{1}{60}\right)}
Multiply \frac{1}{15} times -5.
x=\frac{-\frac{139}{60}±\sqrt{\frac{18121}{3600}}}{2\left(-\frac{1}{60}\right)}
Add \frac{19321}{3600} to -\frac{1}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{139}{60}±\frac{\sqrt{18121}}{60}}{2\left(-\frac{1}{60}\right)}
Take the square root of \frac{18121}{3600}.
x=\frac{-\frac{139}{60}±\frac{\sqrt{18121}}{60}}{-\frac{1}{30}}
Multiply 2 times -\frac{1}{60}.
x=\frac{\sqrt{18121}-139}{-\frac{1}{30}\times 60}
Now solve the equation x=\frac{-\frac{139}{60}±\frac{\sqrt{18121}}{60}}{-\frac{1}{30}} when ± is plus. Add -\frac{139}{60} to \frac{\sqrt{18121}}{60}.
x=\frac{139-\sqrt{18121}}{2}
Divide \frac{-139+\sqrt{18121}}{60} by -\frac{1}{30} by multiplying \frac{-139+\sqrt{18121}}{60} by the reciprocal of -\frac{1}{30}.
x=\frac{-\sqrt{18121}-139}{-\frac{1}{30}\times 60}
Now solve the equation x=\frac{-\frac{139}{60}±\frac{\sqrt{18121}}{60}}{-\frac{1}{30}} when ± is minus. Subtract \frac{\sqrt{18121}}{60} from -\frac{139}{60}.
x=\frac{\sqrt{18121}+139}{2}
Divide \frac{-139-\sqrt{18121}}{60} by -\frac{1}{30} by multiplying \frac{-139-\sqrt{18121}}{60} by the reciprocal of -\frac{1}{30}.
x=\frac{139-\sqrt{18121}}{2} x=\frac{\sqrt{18121}+139}{2}
The equation is now solved.
-\frac{1}{60}x^{2}+\frac{139}{60}x=5
Swap sides so that all variable terms are on the left hand side.
\frac{-\frac{1}{60}x^{2}+\frac{139}{60}x}{-\frac{1}{60}}=\frac{5}{-\frac{1}{60}}
Multiply both sides by -60.
x^{2}+\frac{\frac{139}{60}}{-\frac{1}{60}}x=\frac{5}{-\frac{1}{60}}
Dividing by -\frac{1}{60} undoes the multiplication by -\frac{1}{60}.
x^{2}-139x=\frac{5}{-\frac{1}{60}}
Divide \frac{139}{60} by -\frac{1}{60} by multiplying \frac{139}{60} by the reciprocal of -\frac{1}{60}.
x^{2}-139x=-300
Divide 5 by -\frac{1}{60} by multiplying 5 by the reciprocal of -\frac{1}{60}.
x^{2}-139x+\left(-\frac{139}{2}\right)^{2}=-300+\left(-\frac{139}{2}\right)^{2}
Divide -139, the coefficient of the x term, by 2 to get -\frac{139}{2}. Then add the square of -\frac{139}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-139x+\frac{19321}{4}=-300+\frac{19321}{4}
Square -\frac{139}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-139x+\frac{19321}{4}=\frac{18121}{4}
Add -300 to \frac{19321}{4}.
\left(x-\frac{139}{2}\right)^{2}=\frac{18121}{4}
Factor x^{2}-139x+\frac{19321}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{139}{2}\right)^{2}}=\sqrt{\frac{18121}{4}}
Take the square root of both sides of the equation.
x-\frac{139}{2}=\frac{\sqrt{18121}}{2} x-\frac{139}{2}=-\frac{\sqrt{18121}}{2}
Simplify.
x=\frac{\sqrt{18121}+139}{2} x=\frac{139-\sqrt{18121}}{2}
Add \frac{139}{2} to both sides of the equation.