5 = ( 1,4 \cdot 10 ^ { - 4 } ) ( 1 + A )
Solve for A
A=\frac{249993}{7}\approx 35713,285714286
Share
Copied to clipboard
5=1,4\times \frac{1}{10000}\left(1+A\right)
Calculate 10 to the power of -4 and get \frac{1}{10000}.
5=\frac{7}{50000}\left(1+A\right)
Multiply 1,4 and \frac{1}{10000} to get \frac{7}{50000}.
5=\frac{7}{50000}+\frac{7}{50000}A
Use the distributive property to multiply \frac{7}{50000} by 1+A.
\frac{7}{50000}+\frac{7}{50000}A=5
Swap sides so that all variable terms are on the left hand side.
\frac{7}{50000}A=5-\frac{7}{50000}
Subtract \frac{7}{50000} from both sides.
\frac{7}{50000}A=\frac{249993}{50000}
Subtract \frac{7}{50000} from 5 to get \frac{249993}{50000}.
A=\frac{249993}{50000}\times \frac{50000}{7}
Multiply both sides by \frac{50000}{7}, the reciprocal of \frac{7}{50000}.
A=\frac{249993}{7}
Multiply \frac{249993}{50000} and \frac{50000}{7} to get \frac{249993}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}