Solve for m
\left\{\begin{matrix}m=\frac{np}{5n+q}\text{, }&n\neq 0\text{ and }p\neq 0\text{ and }q\neq -5n\\m\neq 0\text{, }&n\neq 0\text{ and }q=-5n\text{ and }p=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{mq}{5m-p}\text{, }&m\neq 0\text{ and }q\neq 0\text{ and }p\neq 5m\\n\neq 0\text{, }&m\neq 0\text{ and }p=5m\text{ and }q=0\end{matrix}\right.
Share
Copied to clipboard
5mn=np-mq
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mn, the least common multiple of m,n.
5mn+mq=np
Add mq to both sides.
\left(5n+q\right)m=np
Combine all terms containing m.
\frac{\left(5n+q\right)m}{5n+q}=\frac{np}{5n+q}
Divide both sides by 5n+q.
m=\frac{np}{5n+q}
Dividing by 5n+q undoes the multiplication by 5n+q.
m=\frac{np}{5n+q}\text{, }m\neq 0
Variable m cannot be equal to 0.
5mn=np-mq
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mn, the least common multiple of m,n.
5mn-np=-mq
Subtract np from both sides.
\left(5m-p\right)n=-mq
Combine all terms containing n.
\frac{\left(5m-p\right)n}{5m-p}=-\frac{mq}{5m-p}
Divide both sides by 5m-p.
n=-\frac{mq}{5m-p}
Dividing by 5m-p undoes the multiplication by 5m-p.
n=-\frac{mq}{5m-p}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}