Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5=\frac{19}{9}-\left(49x^{2}+112x+64\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7x+8\right)^{2}.
5=\frac{19}{9}-49x^{2}-112x-64
To find the opposite of 49x^{2}+112x+64, find the opposite of each term.
5=-\frac{557}{9}-49x^{2}-112x
Subtract 64 from \frac{19}{9} to get -\frac{557}{9}.
-\frac{557}{9}-49x^{2}-112x=5
Swap sides so that all variable terms are on the left hand side.
-\frac{557}{9}-49x^{2}-112x-5=0
Subtract 5 from both sides.
-\frac{602}{9}-49x^{2}-112x=0
Subtract 5 from -\frac{557}{9} to get -\frac{602}{9}.
-49x^{2}-112x-\frac{602}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\left(-49\right)\left(-\frac{602}{9}\right)}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, -112 for b, and -\frac{602}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-112\right)±\sqrt{12544-4\left(-49\right)\left(-\frac{602}{9}\right)}}{2\left(-49\right)}
Square -112.
x=\frac{-\left(-112\right)±\sqrt{12544+196\left(-\frac{602}{9}\right)}}{2\left(-49\right)}
Multiply -4 times -49.
x=\frac{-\left(-112\right)±\sqrt{12544-\frac{117992}{9}}}{2\left(-49\right)}
Multiply 196 times -\frac{602}{9}.
x=\frac{-\left(-112\right)±\sqrt{-\frac{5096}{9}}}{2\left(-49\right)}
Add 12544 to -\frac{117992}{9}.
x=\frac{-\left(-112\right)±\frac{14\sqrt{26}i}{3}}{2\left(-49\right)}
Take the square root of -\frac{5096}{9}.
x=\frac{112±\frac{14\sqrt{26}i}{3}}{2\left(-49\right)}
The opposite of -112 is 112.
x=\frac{112±\frac{14\sqrt{26}i}{3}}{-98}
Multiply 2 times -49.
x=\frac{\frac{14\sqrt{26}i}{3}+112}{-98}
Now solve the equation x=\frac{112±\frac{14\sqrt{26}i}{3}}{-98} when ± is plus. Add 112 to \frac{14i\sqrt{26}}{3}.
x=-\frac{\sqrt{26}i}{21}-\frac{8}{7}
Divide 112+\frac{14i\sqrt{26}}{3} by -98.
x=\frac{-\frac{14\sqrt{26}i}{3}+112}{-98}
Now solve the equation x=\frac{112±\frac{14\sqrt{26}i}{3}}{-98} when ± is minus. Subtract \frac{14i\sqrt{26}}{3} from 112.
x=\frac{\sqrt{26}i}{21}-\frac{8}{7}
Divide 112-\frac{14i\sqrt{26}}{3} by -98.
x=-\frac{\sqrt{26}i}{21}-\frac{8}{7} x=\frac{\sqrt{26}i}{21}-\frac{8}{7}
The equation is now solved.
5=\frac{19}{9}-\left(49x^{2}+112x+64\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7x+8\right)^{2}.
5=\frac{19}{9}-49x^{2}-112x-64
To find the opposite of 49x^{2}+112x+64, find the opposite of each term.
5=-\frac{557}{9}-49x^{2}-112x
Subtract 64 from \frac{19}{9} to get -\frac{557}{9}.
-\frac{557}{9}-49x^{2}-112x=5
Swap sides so that all variable terms are on the left hand side.
-49x^{2}-112x=5+\frac{557}{9}
Add \frac{557}{9} to both sides.
-49x^{2}-112x=\frac{602}{9}
Add 5 and \frac{557}{9} to get \frac{602}{9}.
\frac{-49x^{2}-112x}{-49}=\frac{\frac{602}{9}}{-49}
Divide both sides by -49.
x^{2}+\left(-\frac{112}{-49}\right)x=\frac{\frac{602}{9}}{-49}
Dividing by -49 undoes the multiplication by -49.
x^{2}+\frac{16}{7}x=\frac{\frac{602}{9}}{-49}
Reduce the fraction \frac{-112}{-49} to lowest terms by extracting and canceling out 7.
x^{2}+\frac{16}{7}x=-\frac{86}{63}
Divide \frac{602}{9} by -49.
x^{2}+\frac{16}{7}x+\left(\frac{8}{7}\right)^{2}=-\frac{86}{63}+\left(\frac{8}{7}\right)^{2}
Divide \frac{16}{7}, the coefficient of the x term, by 2 to get \frac{8}{7}. Then add the square of \frac{8}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{7}x+\frac{64}{49}=-\frac{86}{63}+\frac{64}{49}
Square \frac{8}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{7}x+\frac{64}{49}=-\frac{26}{441}
Add -\frac{86}{63} to \frac{64}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{7}\right)^{2}=-\frac{26}{441}
Factor x^{2}+\frac{16}{7}x+\frac{64}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{7}\right)^{2}}=\sqrt{-\frac{26}{441}}
Take the square root of both sides of the equation.
x+\frac{8}{7}=\frac{\sqrt{26}i}{21} x+\frac{8}{7}=-\frac{\sqrt{26}i}{21}
Simplify.
x=\frac{\sqrt{26}i}{21}-\frac{8}{7} x=-\frac{\sqrt{26}i}{21}-\frac{8}{7}
Subtract \frac{8}{7} from both sides of the equation.