Solve for c
c = \frac{13}{5} = 2\frac{3}{5} = 2.6
Share
Copied to clipboard
5=-\frac{6}{5}\left(-2\right)+c
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
5=\frac{-6\left(-2\right)}{5}+c
Express -\frac{6}{5}\left(-2\right) as a single fraction.
5=\frac{12}{5}+c
Multiply -6 and -2 to get 12.
\frac{12}{5}+c=5
Swap sides so that all variable terms are on the left hand side.
c=5-\frac{12}{5}
Subtract \frac{12}{5} from both sides.
c=\frac{25}{5}-\frac{12}{5}
Convert 5 to fraction \frac{25}{5}.
c=\frac{25-12}{5}
Since \frac{25}{5} and \frac{12}{5} have the same denominator, subtract them by subtracting their numerators.
c=\frac{13}{5}
Subtract 12 from 25 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}