Solve for x
x=\frac{2}{15}\approx 0.133333333
x=-0.2
Graph
Share
Copied to clipboard
5=125x^{2}+\frac{1}{2}\times 50\left(x+0.2\right)^{2}
Multiply \frac{1}{2} and 250 to get 125.
5=125x^{2}+25\left(x+0.2\right)^{2}
Multiply \frac{1}{2} and 50 to get 25.
5=125x^{2}+25\left(x^{2}+0.4x+0.04\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+0.2\right)^{2}.
5=125x^{2}+25x^{2}+10x+1
Use the distributive property to multiply 25 by x^{2}+0.4x+0.04.
5=150x^{2}+10x+1
Combine 125x^{2} and 25x^{2} to get 150x^{2}.
150x^{2}+10x+1=5
Swap sides so that all variable terms are on the left hand side.
150x^{2}+10x+1-5=0
Subtract 5 from both sides.
150x^{2}+10x-4=0
Subtract 5 from 1 to get -4.
a+b=10 ab=150\left(-4\right)=-600
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 150x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
-1,600 -2,300 -3,200 -4,150 -5,120 -6,100 -8,75 -10,60 -12,50 -15,40 -20,30 -24,25
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -600.
-1+600=599 -2+300=298 -3+200=197 -4+150=146 -5+120=115 -6+100=94 -8+75=67 -10+60=50 -12+50=38 -15+40=25 -20+30=10 -24+25=1
Calculate the sum for each pair.
a=-10 b=15
The solution is the pair that gives sum 5.
\left(150x^{2}-10x\right)+\left(15x-4\right)
Rewrite 150x^{2}+10x-4 as \left(150x^{2}-10x\right)+\left(15x-4\right).
5x\left(15x-2\right)+15x-2
Factor out 5x in 150x^{2}-10x.
\left(15x-2\right)\left(5x+1\right)
Factor out common term 15x-2 by using distributive property.
x=\frac{2}{15} x=-\frac{1}{5}
To find equation solutions, solve 15x-2=0 and 5x+1=0.
5=125x^{2}+\frac{1}{2}\times 50\left(x+0.2\right)^{2}
Multiply \frac{1}{2} and 250 to get 125.
5=125x^{2}+25\left(x+0.2\right)^{2}
Multiply \frac{1}{2} and 50 to get 25.
5=125x^{2}+25\left(x^{2}+0.4x+0.04\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+0.2\right)^{2}.
5=125x^{2}+25x^{2}+10x+1
Use the distributive property to multiply 25 by x^{2}+0.4x+0.04.
5=150x^{2}+10x+1
Combine 125x^{2} and 25x^{2} to get 150x^{2}.
150x^{2}+10x+1=5
Swap sides so that all variable terms are on the left hand side.
150x^{2}+10x+1-5=0
Subtract 5 from both sides.
150x^{2}+10x-4=0
Subtract 5 from 1 to get -4.
x=\frac{-10±\sqrt{10^{2}-4\times 150\left(-4\right)}}{2\times 150}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 150 for a, 10 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 150\left(-4\right)}}{2\times 150}
Square 10.
x=\frac{-10±\sqrt{100-600\left(-4\right)}}{2\times 150}
Multiply -4 times 150.
x=\frac{-10±\sqrt{100+2400}}{2\times 150}
Multiply -600 times -4.
x=\frac{-10±\sqrt{2500}}{2\times 150}
Add 100 to 2400.
x=\frac{-10±50}{2\times 150}
Take the square root of 2500.
x=\frac{-10±50}{300}
Multiply 2 times 150.
x=\frac{40}{300}
Now solve the equation x=\frac{-10±50}{300} when ± is plus. Add -10 to 50.
x=\frac{2}{15}
Reduce the fraction \frac{40}{300} to lowest terms by extracting and canceling out 20.
x=-\frac{60}{300}
Now solve the equation x=\frac{-10±50}{300} when ± is minus. Subtract 50 from -10.
x=-\frac{1}{5}
Reduce the fraction \frac{-60}{300} to lowest terms by extracting and canceling out 60.
x=\frac{2}{15} x=-\frac{1}{5}
The equation is now solved.
5=125x^{2}+\frac{1}{2}\times 50\left(x+0.2\right)^{2}
Multiply \frac{1}{2} and 250 to get 125.
5=125x^{2}+25\left(x+0.2\right)^{2}
Multiply \frac{1}{2} and 50 to get 25.
5=125x^{2}+25\left(x^{2}+0.4x+0.04\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+0.2\right)^{2}.
5=125x^{2}+25x^{2}+10x+1
Use the distributive property to multiply 25 by x^{2}+0.4x+0.04.
5=150x^{2}+10x+1
Combine 125x^{2} and 25x^{2} to get 150x^{2}.
150x^{2}+10x+1=5
Swap sides so that all variable terms are on the left hand side.
150x^{2}+10x=5-1
Subtract 1 from both sides.
150x^{2}+10x=4
Subtract 1 from 5 to get 4.
\frac{150x^{2}+10x}{150}=\frac{4}{150}
Divide both sides by 150.
x^{2}+\frac{10}{150}x=\frac{4}{150}
Dividing by 150 undoes the multiplication by 150.
x^{2}+\frac{1}{15}x=\frac{4}{150}
Reduce the fraction \frac{10}{150} to lowest terms by extracting and canceling out 10.
x^{2}+\frac{1}{15}x=\frac{2}{75}
Reduce the fraction \frac{4}{150} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{15}x+\left(\frac{1}{30}\right)^{2}=\frac{2}{75}+\left(\frac{1}{30}\right)^{2}
Divide \frac{1}{15}, the coefficient of the x term, by 2 to get \frac{1}{30}. Then add the square of \frac{1}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{15}x+\frac{1}{900}=\frac{2}{75}+\frac{1}{900}
Square \frac{1}{30} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{15}x+\frac{1}{900}=\frac{1}{36}
Add \frac{2}{75} to \frac{1}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{30}\right)^{2}=\frac{1}{36}
Factor x^{2}+\frac{1}{15}x+\frac{1}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{30}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{30}=\frac{1}{6} x+\frac{1}{30}=-\frac{1}{6}
Simplify.
x=\frac{2}{15} x=-\frac{1}{5}
Subtract \frac{1}{30} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}