Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(7+2i\right)}{\left(7-2i\right)\left(7+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7+2i.
\frac{5\left(7+2i\right)}{7^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(7+2i\right)}{53}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 7+5\times \left(2i\right)}{53}
Multiply 5 times 7+2i.
\frac{35+10i}{53}
Do the multiplications in 5\times 7+5\times \left(2i\right).
\frac{35}{53}+\frac{10}{53}i
Divide 35+10i by 53 to get \frac{35}{53}+\frac{10}{53}i.
Re(\frac{5\left(7+2i\right)}{\left(7-2i\right)\left(7+2i\right)})
Multiply both numerator and denominator of \frac{5}{7-2i} by the complex conjugate of the denominator, 7+2i.
Re(\frac{5\left(7+2i\right)}{7^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{5\left(7+2i\right)}{53})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 7+5\times \left(2i\right)}{53})
Multiply 5 times 7+2i.
Re(\frac{35+10i}{53})
Do the multiplications in 5\times 7+5\times \left(2i\right).
Re(\frac{35}{53}+\frac{10}{53}i)
Divide 35+10i by 53 to get \frac{35}{53}+\frac{10}{53}i.
\frac{35}{53}
The real part of \frac{35}{53}+\frac{10}{53}i is \frac{35}{53}.